
AFRL-IF-RS-TR-2005-59 Vol. 1 (of 4)
Interim Report
February 2005

OPEN RADIO COMMUNICATIONS
ARCHITECTURE CORE FRAMEWORK V1.1.0
VOLUME 1 SOFTWARE USERS MANUAL

L-3 Communications Government Services, Incorporated

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Copyright C2004, L-3 Communications Government Services Inc.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2005-59 Vol. 1 (of 4) has been reviewed and is approved for
publication

APPROVED: /s/

RICHARD D. HINMAN
Project Engineer

FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FEBRUARY 2005 Interim Feb 04- Sep 04

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
OPEN RADIO COMMUNICATIONS ARCHITECTURE CORE FRAMEWORK C - F30602-01-C-0205
V1.1.0 VOLUME 1 SOFTWARE USERS MANUAL PE - 62702F

PR - APAW
TA - 02

6. AUTHOR(S) WU -01
Mike Gudaitis, Dave Hallatt,
A. Bagdasarova, Mike Yax

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
L-3 Communications Government Services, Incorporated REPORT NUMBER

1300-B Floyd Avenue
Rome New York 13440

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Air Force Research Laboratory/IFG AGENCY REPORT NUMBER

525 Brooks Road
Rome New York 13441-4505 AFRL-IF-RS-TR-2005-59 Vol. 1 (of 4)

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Richard D. Hinman/IFG/(315) 330-3616/ Richard.Hinman@rl.af.mil

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DIS TRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 Words)
This document describes software developed to support the Joint Tactical Radio System (JTRS) program. The
software implementation includes a Core Framework (CF) and sample applications that are based on the Software
Communications Architecture (SCA) v2.2. The software was designed for a desktop computer running the Linux
operating system (OS). It was developed in C++, uses ACE/TAO for CORBA middleware, Xerces for the XML parser,
and Red Hat Linux for the Operating System. The software is referred to as, Open Radio Communication Architecture
Core Framework, "OrcaCF" (formerly known as LinuxFC), this document describes version 1.1.0 of the OrcaCF. This
Software User Manual (SUM) tells a hands-on software user how to install and use the OrcaCF v1.1.0 subsystem. The
architecture and requirements are based on the JTRS SCA v2.2.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Communication, Joint Tactical Radio Systems, JTRS, Software Communication 159
Architecture, SCA, Core Framework, CORBA, Middleware 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1.0 SC O PE ... 1
1.1 Identification ... 1
1.2 Subsystem Overview ... 1
1.3 Docum ent Overview .. 3

2.0 R EFER EN CED D O C U M EN TS ... 4
2.1 G overnm ent Docum ents ... 4
2.2 N on-G overnm ent Docum ents .. 4

3.0 SO FTW A R E SU M M A R Y .. 5
3.1 Software Application .. 5
3.2 Software Inventory ... 5

3.2.1 Contents of the OrcaCF ... 5
3.2.2 Changes Installed .. 5
3.2.3 Related Docum ents ... 5
3.2.4 Troubleshooting Tips .. 5
3.2.5 Environm ent .. 7

3.3 Software Organization and Overview of Operation ... 8
3.3.1 Nam ing Service ... 8
3.3.2 Dom ain Booter .. 8
3.3.3 Node Booter .. 8
3.3.4 Event Viewer .. 8
3.3.5 Log Viewer ... 9
3.3.6 Application HM I ... 9

3.4 Contingencies and Alternate States and M odes of Operation .. 9
3.5 R equirem ents Traceability ... 9
3.6 Qualification Provisions ... 10
3.7 Security and Privacy ... 10
3.8 Feedback .. 10

3.8.1 Feedback Form .. 11

4.0 A C CE SS TO TH E SO FTW A R E ... 12
4.1 First-tim e U ser of the Software .. 12

4.1.1 Equipm ent Fam iliarization .. 12
4.1.2 Access Control .. 13
4.1.3 Installation and Setup .. 14

4.2 Initiating a Session .. 16
4.2.1 Running the Nam ing Service .. 17
4.2.2 Running the Dom ain Booter (CoreFram ework/Server) ... 18
4.2.3 Running the Node Booter (DeviceM anager/Server) ... 20
4.2.4 Running the Event Viewer .. 23
4.2.5 Running the Log Viewer ... 24
4.2.6 Running the Application HMI (Human Machine Interface) ... 26

4.3 Stopping and Suspending W ork .. 33
4.4 Uninstalling the Application .. 34

5.0 SOFTW ARE SUPPORT INFORMATION .. 34
5.1 "A s Built" Software Design .. 34

6.0 C O PY R IG H T N O TICE ... 34

7.0 N O TE S ... 36

A ppendix A . License Inform ation ... 43
A ppendix B . D evelopers N otes .. 70
A ppendix C. Com pilation Build Procedures ... 83
A ppendix D . Softw are D esign ... 96
A ppendix E. Errata .. 126
A ppendix F. R elease N otes ... 132
A ppendix G . Code Style G uide .. 134

ii

List of Figures
Figure 1-1 OrcaCF Conceptual V iew ... 1
Figure 1-2 SCA Class Structure of the OrcaCF (adapted from Figure 3-3, MSRC-5000SCA v.

2 .2) .. 2
Figure 1-3 Conceptual View of the SoundDemo "Waveform" .. 3
Figure 3-1 Sound Dem o Sate Diagram .. 9
Figure 4-1 Example of the OrcaCF Directory Structure ... 16
Figure 4-2 Example Screenshot Showing Start of Naming Service .. 18
Figure 4-3 Example Screenshot Showing Start of the Domain Booter 19
Figure 4-4 Example Screenshot of NodeBooter Startup ... 21
Figure 4-5 Example Screenshot Showing DomainBooter after NodeBooter Startup 22
Figure 4-6 Example Screenshot Showing Start of the Event Viewer 23
Figure 4-7 Example Screenshot Showing Start of the Log Viewer .. 25
Figure 4-8 Example Screenshot Showing Log Viewer after Log selection 25
Figure 4-9 Example Screenshot Showing Application HMI Startup .. 27
Figure 4-10 Example Screenshot Showing Application HMI After Application Creation 27
Figure 4-11 Example Screenshot Showing NodeBooter After Application Creation 28
Figure 4-12 Example Screenshot Showing DomainBooter After Application Creation 29
Figure 4-13 Example Screenshot Showing Event Viewer After Application Creation 29
Figure 4-14 Example Screenshot Showing Log Activity in the Log Viewer 30
Figure 4-15 KMix toolbar for adjusting audio I/O ... 31
Figure 4-16 Example Screenshot Showing Application HMI After User Interaction 32

List of Tables
Table 3-1 File and D irectory Structure .. 5

iii

1.0 Scope
This document describes software developed to support the Joint Tactical Radio System (JTRS) program.
The software implementation includes a Core Framework (CF) and sample applications that are based on
the Software Communications Architecture (SCA) v2.2. The software was designed for a desktop
computer running the Linux operating system (OS). It was developed in C++, uses ACE/TAO for
CORBA middleware, Xerces for the XML parser, and Red Hat Linux for the Operating System. The
software is referred to as "OrcaCF" (formerly known as LinuxCF), this document describes version 1.1.0
of the OrcaCF.

1.1 IDENTIFICATION

This Software User Manual (SUM) tells a hands-on software user how to install and use the OrcaCF
vi. 1.10 subsystem. The architecture and requirements are based on the JTRS SCA v2.2.

1.2 SUBSYSTEM OVERVIEW

This SUM addresses vl.1.0 of the OrcaCF Project. The OrcaCF software was developed to be in
compliance with the SCA v2.2 (reference 2.1 .a). Specifically, the OrcaCF software contains:

a. An Operating System (Linux) per SCA v2.2, Section 3.1.1
b. Middleware and Services (ACE/TAO) per SCA v2.2, Section 3.1.2
c. A CF per SCA v2.2, Section 3.1.3
d. A simple application per SCA v2.2, Section 3.2

and meets Logical Device and General Software Rule requirements of SCA v2.2, Sections 3.3 and 3.4,
respectively. Figure 1-1 shows conceptually how the OrcaCF components fit together.

Applications' Resources,
CF Base Application Interfaces

Core Framework:
Framework Control &

Framework Services Interfaces

S~CO R BA OR B

TAO non-CO R BA
components

or
SIX) Adaptive Communication Environment (ACE) device drivers

OS LI NUX

IOrcaCF Developement

Reused Open Source COTS

Figure 1-1 OrcaCF Conceptual View

The Linux OS is from Red Hat. The Object Request Broker (ORB) is The ACE ORB (TAO) from Doug
Schmidt's web site (reference 2.2.b). The Core Framework and sample applications (blue highlighted
areas) is new software development, as described in this SUM. The OrcaCF is developed to run on a

standard Intel x86-based PC. It represents a complete CF implementation that has been tested for
compliance to the SCA v2.2 specification. The class structure of the OrcaCF is shown in Figure 1-2
below.

Legend
Implem...nted as litmp nted by

Core Application SAervices \0C Arrplications

Core Framework Interface Core Framework Interface

r, ac-e» • Ineac-,»f
P upplier i ycle ... O b 'ec

<neface- 0

ProetySet

-Itrface-»e
eFigure 1-2 -SC Class Structeof te OT Rla contains on A la "wavefo--=-=-=trm":

1.A impl audio rord•ere applicationFact wriesi

deontrt the I of terC
r A or Su deDevicefom" h. t R InteRfa de , i

r d o�e n v r domo "iwn anvfor l

cn asser C rd esuce, deviceManagers

0_ -Ite XMLarvic
Cos Nam e Sev CFe M~rie ie

Co vent Service =CFýY Lorvice [<<nterf

Note: Optional Log Service is included:

Figure 1-2 SCA Class Structurv of the oundhe OrcaCF
(adaptedfrom Figure 3-3, MSRC-5000SCA v. 2.2)

The OrcaCF is ideal for rapid prototyping of waveforms built to SCA specifications since it is PC-based,
and uses Open Source software components. It has been built and tested on Red Hat 7.3, 9.0, and Fedora
Core 1. Red Hat 9.0 was used for the screenshots in the figures in this SUM.

This Release contains one Application "waveform":

1. A simple audio recorder Application "waveform" called SoundDemo that will be used to
demonstrate the capabilities of the OrcaCF.

The main text of this SUM is written for demonstrating the audio recorder application. The audio
recorder Application, or SoundDemo "waveform", has two modes. In the RECORD mode, voice is
sampled from the microphone and written to a Sound File; in the PLAYBACK mode, the Sound File is
read and the voice recording is played back on the speakers. The SoundDemo "waveform" Application
consists of an Assembly Controller, a Recorder Resource, and an Application HMI (Human Machine
Interface). See Figure 1-3 below for a conceptual view of the SoundDemo "waveform".

Consoece

Card Linu OXML Files

Linux PC

Figure 1-3 Conceptual View of the SoundDemo "Waveform"

1.3 DOCUMENT OVERVIEW

This document is based on a tailored version of Data Item Description (DID) DI-IIPSC-8 1443, SUM,
combined with applicable sections of DI-IIPSC-8 1442, Software Version Description (SVD), DI-IPSC-
8 1439, Software Test Description (STD), and DI-IIPSC-8 1441, Software Product Specification (SPS).
For the OrcaCF vil. 1.0, these separate DIDs would contain redundant information. Therefore, they were
combined into one document to simplify configuration management and provide consistent information to
the user. This SUM shall be maintained and modified to reflect the current build of the OrcaCF Project.

Section 2.0 lists the documents referenced by this SUM and used during its preparation.

Section 3.0 provides a summary of the delivered software.

Section 4.0 includes step-by-step procedures oriented to the first time/occasional user to test the
functionality of the delivered software.

Section 5.0 references Software Design.

Section 6.0 addresses the distribution, licensing and copyright issues.

Section 7.0 provides notes to aid in the general understanding of this document and the software
application.

3!vc il vn

2.0 REFERENCED DOCUMENTS

2.1 GOVERNMENT DOCUMENTS

Standards and other publications produced by government agencies that have been utilized in creating this
SUM and may also be utilized while developing the OrcaCF software product are listed here.

a. Software Communication Architecture (SCA) Specification with Appendices, MSRC-5000SCA
V2.2, 17 November 2001

b. Application Program Interface (API) Supplement to the Software Communications Architecture
Specification with Appendices, MSRC-5000API V3.0, 17 November 2001

c. Security Supplement to the Software Communications Architecture Specification with Appendices,
MSRC-5000API V3.0, 17 November 2001

d. Support and Rationale Document (SRD) for the Software Communication Architecture Specification,
V2.2, 19 December 2001.

e. JTeL SCA Requirements Matrix, Export+Vl+-+Load+vl+-+SCA+Baseline+ReqmtsV3.0.xls, 8 Aug
2002

f. Process Asset Library (PAL), Systems Engineering Process Office (SEPO), SPAWAR Systems
Center, http://sepo.spawar.navy.mil/sepo/index2.html

g. JTeL Virtual Private Office, https://vlpo.sspawar.navy.mil/SSC-SD/JTRS/TL/master.nsf (password
protected)

h. OrcaCF Software Requirements Specification (SRS), OrcaCF_SRSvl_1_0.doc, Jun 2004.
2.2 NON-GOVERNMENT DOCUMENTS

Same as previous subsection but the documents were not published by government agencies.

a. Red Hat Linux website: http://www.redhat.com
b. ACE/TAO websites: http://www.cs.wustl.edu/-schmidt/TAO.html, http://www.theaceorb.com/
c. OCI TAO Developers Guide version 1.2a, volume 1&2 (Part numbers 510-01, 510-02), Object

Computing Inc., 2002.
d. Software Engineering Institute Capability Maturity Model for Software, Version 3.0, February 1993
e. Industry Implementation of International Standard ISO/JEC 12207: 1995, Standard for Information

Technology, Software Life Cycle Processes, IEEE/EIA 12207 Series, March 1998
f. OMG Software Based Communication Domain Task Force, http://sbc.omg.org
g. Pure CORBA by Fintan Bolton, 5tf Edition, ISBN 0-672-321812. Sam's Publishing Inc., 2002.
h. Advanced CORBA Programming with C++, by Michi Henning & Steve Vinoski,

ISBN 0-201-37927-9, Addison-Wesley Longman Inc., 1999.
i. Open Sound System API documentation: http://www.opensound.comIpguide/index.html.

4

3.0 Software Summary

3.1 SOFTWARE APPLICATION

The OrcaCF v1.1.0 is a Core Framework developed and tested in accordance with SCA v2.2. It includes
sample applications for running and testing the current CF development.

3.2 SOFTWARE INVENTORY

All documents, files and programs for running the OrcaCF v 1. 1.0 application are included in the zipped
file provided with this document. The SUM refers to the binary distribution of the OrcaCF vi. 1.0. For
information and instructions for the source distribution of the OrcaCF vl.1.0, please refer to the
OrcaCFSUMAppCCompilationBuildProcedures vl 1 0.doc. A description of all materials
included in the binary distribution is provided in section 3.2.1.

3.2.1 CONTENTS OF THE ORCACF

Table 3-1 provides a description of the file structure and contents of the zipped file.

Di iect or)e;cr iptIionl

OrcaCF All of the application scripts and a Quick Reference Guide
(QRG) for running the software.

OrcaCF/bin Binaries required for running the application.

OrcaCF/ doc Documentation

OrcaCF/inc Required header source files and generated source code.

OrcaCF/lib Required shared library files.

OrcaCF/projects All developed and generated source code.

or caCF/trp A temporary directory used during CoreFramework
operation.

OrcaCF/xml XML files required for configuration of the OrcaCF
components.

Table 3-1 File and Directory Structure

3.2.2 CHANGES INSTALLED

This is the first formal release of the OrcaCF. See Appendix F of this SUM, entitled Release Notes, for a
list of SCA change proposals (CPs) incorporated in this release.

3.2.3 RELATED DOCUMENTS

Refer to Section 1.3 concerning related documents.

3.2.4 TROUBLESHOOTING TIPS

This section provides a listing of known issues pertaining to the running of the OrcaCF. For issues
regarding the SCA v2.2, change proposals and requirements, refer to the Errata included in Appendix G.

1. This Release has only been verified on hardware configurations that include SoundBlaster Live!,
and SoundBlaster PC1128 cards, as well as motherboard sound devices consisting of the Analog
Devices (AD1885) AC 97 Codec. However with motherboard sound, you may encounter write
errors or read errors if you press the record and play keystrokes in rapid succession. The sound
device supported by your PC will be displayed in KMix above the slider bars. We have not
verified the OrcaCF Sound Demo operation with other soundcards or on-board sound devices.

5

2. Attempts to execute the OrcaCF scripts may result in a "permission denied" error. If such an
error occurs, verify that you have "execute" permissions for the scripts. This may be done by
locating the scripts in your file browser of choice, right-clicking the script and selecting
properties, and verifying the appropriate check box is selected within the permissions
tab. This same "permission denied" error may also result due to improper permissions assigned
to the actual executables, which are located in the /home/<username>/OrcaCF/bin
directory. Locate the executables and verify that you have "execute" permissions for those files.

3. The OrcaCF directory resulting from unzipping the OrcaCF vi_1_0_binary package
includes a trap subdirectory. Even though it is empty upon unzipping the package, it is not to be
deleted. Deleting this trap subdirectory will cause a file exception error to occur during
execution of the "s ta r tDoma in Bo o ter" executable script. This trap subdirectory is used by
the CoreFramework.

4. Running the OrcaCF requires the use of a GPPTemp directory with "write" and "execute"
permissions. The final path of this directory is
/home/<username>/OrcaCF/tmp/GPPTemp. If this GPPTemp directory does not exist
prior to testing OrcaCF, it will be created during OrcaCF execution with you as the owner, and
you will be given all necessary permissions for this directory. If this folder does exist prior to
testing OrcaCF, you must verify that you have "write" and "execute" permissions. A
consequence of not having "write" permissions is a "Create Application Error" during
execution of the "st a rtAppl2i cat ionHMlI" executable script. A consequence of not having
"execute" permissions is a "Caught a CORBA exception" error during execution of the
"startApplicationHMl" executable script.

5. Running the Sound Demo requires the user to verify that the microphone is set as the recording
device. Red Hat Linux 9.0 contains a mixer program, KMix, which lets you modify volume
settings for the sound device, and select the desired recording device. The currently active
recording device is indicated by a red light beneath the device's volume control. Make sure the
red light is lit below the microphone volume control prior to running the SoundDemo. If the
sound test is performed without the microphone as the recording device, the result will be the
absence of sound, or noisy sound without voice during playback.

6. The AudioDevice interface was programmed using the Open Sound System (OSS) API (reference
2.2.i), which is the standard sound API for Red Hat Linux 9.0 and earlier. The default
configuration values for the sound card are shown in the NodeBooter window. If you have
problems with the sound performance, check the settings displayed in the NodeBooter window.
For example, using integrated motherboard sound, the following text may be seen:

[AUDIODEV] Configure: BITS/SAMPLE - 16
[AUDIODEV] : Configure: MONO/STEREO - Stereo
[AUDIODEV] : Configure: SAMPLE RATE(Hz) - 16000
[AUDIODEV] : Configure: BLOCK SIZE - 16384
[AUDIODEV] : Configure: BUFFER SIZE - 32768

The first three values are set in the XML files. These are the default values used by the OrcaCF
to configure the AudioDevice. The BLOCK SIZE is the audio buffer memory used by the sound
card. It is specified in bytes and allocated in RAM for getting data to/from the soundcard. The
BUFFER SIZE refers to the size of the CORBA packet used by the OrcaCF to move the audio
data between CORBA objects. The BUFFER SIZE must be at least twice as large as the BLOCK
SIZE for proper performance.

7. This distribution has been tested on Red Hat Linux 7.3, 9.0, and Fedora Core 1. The Sound
Demo does not run properly under Fedora Core 2, which is the latest free distribution sponsored

by Red Hat. Fedora Core 2 uses the Linux kernel 2.6.x which removed native support for the
Open Sound System (OSS), and switched the default to Advanced Linux Sound Architecture
(ALSA). The OrcaCF Sound Demo uses OSS which doesn't work well with the current version
of ALSA.

8. Errors and exceptions that may occur while testing OrcaCF vl.1.0 are often caused because a
duplicate of the process attempting execution is already running in the background. If an error
occurs while running the core framework tests, troubleshooting should begin by checking all
currently running processes using the "top" utility. In a console window enter top at the prompt
and press <ENTER>. Type u, then your <username>, and then press <ENTER> to identify any
OrcaCF processes running. Terminate all OrcaCF processes before retesting the core framework.
Terminating a process is done within the t op utility by typing k, hitting <ENTER >, and entering
the process ID number, and then hitting <ENTER > twice.

9. Check the website, www.OrcaCF.com for the latest information.

3.2.5 ENVIRONMENT

OrcaCF vi. 1.0 is delivered with all the necessary binary executable software the user needs to run the
software. The software environment is Red Hat Linux 9.0 running on a standard x86 PC. Other versions
of Linux can be supported by recompiling the source code on the target OS.

3.2.5.1 HARDWARE

The following is the minimum system configuration recommended for reliable performance of the
OrcaCF vl. 1.0.

"* CPU - Pentium III 550MHz
"* RAM - 512MB SDRAM
"* Display- ATI RAGE 128
"* Sound - SoundBlaster PCI 128
"* Storage - 10GB IDE hard drive with ext3 filesystem
"* NIC - 3Com 3C590/3C595/3C90x

3.2.5.2 SOFTWARE

The following software packages, along with their version numbers, were installed on the Linux testing
machine and is the minimum configuration needed for reliable performance. The binaries delivered with
this distribution will only work for Red Hat Linux 9.0.

"* Desktop - Red Hat Linux 9.0
"o Linux *Kernel 2.4.20-8
"o KDE3.1-10

"* Properly configured sound card - (Our configuration listed below)
o Sound Driver- ES1371 AudioPC197 Driver v0.31

*Note: Linux kernel versions 2.6.x. changed audio support from OSS to ALSA. The Sound

Demo does not work with ALSA in the 2.6.x kernel used in Fedora Core 2.

7

Listed below is the software used in developing the OrcaCF, but not required to run the demo:

"* IDE - KDevelop 2.1.5
"* Compiler - gcc 3.2.2
"* make 3.79.1
"* ACE v5.4 / TAO v1.4
"* XML Parser - Apache Xerces v2.5.0
"* Net/File Browser - Konqueror 3.0.0-12

3.3 SOFTWARE ORGANIZATION AND OVERVIEW OF OPERATION

OrcaCF vl.1.0 consists of six executables running in separate processes. Each process has its own ORB
instantiation. The five executable processes are referred to as Naming Service, Domain Booter, Node
Booter, Event Viewer, Log Viewer and Application Human Machine Interface (HMI). Each of these will
be explained in more detail below.

3.3.1 NAMING SERVICE

The Naming Service executable included with the OrcaCF vi.1.0 is ACE/TAO's open source
implementation of the Object Management Group's (OMG) Common Object Request Broker
Architecture (CORBA) Naming Service Specification. The Naming Service allows CORBA objects to be
associated with an abstract name, which can be used by CORBA clients to locate the objects. A script file
is provided to start the Naming Service executable. It is essential that this Naming Service is started first
and is running before any of the other scripts are executed.

3.3.2 DOMAIN BOOTER

The Domain Booter is an executable that starts and runs the Domain Manager and Event Service. A
script file is provided to start the Domain Booter executable. Upon startup, the Domain Booter locates
the Naming Service and creates the DomainManager. The DomainManager then parses its
DomainManager Configuration Descriptor (DMD) Extensible Markup Language (XML) file to determine
its Naming Service name. It then registers itself with the Naming Service using the Naming Service name
it obtained from the DMD. This registration allows CORBA clients to find the DomainManager via the
Naming Service. It is essential that the Domain Booter is started after the Naming Service, and is running
before any of the remaining executables are started. If the Domain Booter is stopped, the Naming Service
must be restarted prior to restarting the Domain Booter.

3.3.3 NODE BOOTER

The Node Booter is an executable that starts up the DeviceManager and any of its initial devices
(AudioDevice, GPPDevice) and services (Log Service) that are listed in the Device Configuration
Descriptor (DCD) XML file. A script file is provided to start the Node Booter executable. The
components listed in the DCD can be Devices and/or Services. Any initial connections between
components listed in the DCD are made by the DomainManager after the DeviceManager registers with
the DomainManager.

3.3.4 EVENT VIEWER

The Event Viewer is a utility program that allows the user to monitor events being passed to the Incoming
Domain Management (IDM) Event Channel (IDMChannel) and Outgoing Domain Management (ODM)
Event Channel (ODMChannel) (See SCA v.2.2, Section 3.1.2.4.1). A script file is provided to start the
Event Viewer executable. The Event Viewer is optional and is not required to run the rest of the
executables. In order to view events generated by any component, the Event Viewer must be running

8

prior to the component's execution. For the Event Viewer to function properly, the Naming Service and
Domain Booter must be running.

3.3.5 LOG VIEWER

The Log Viewer is a utility program that allows the user to monitor Logs that are being written by
components. A script file is provided to start the Log Viewer executable. The Log Viewer is optional
and is not required to run the rest of the executables. In order to view Logs generated by any component,
the Log Viewer must be running prior to the component's executable. For the Log Viewer to function
properly, the Naming Service, Domain Booter, and Node Booter must be running.

3.3.6 APPLICATION HMI

The Application HMI is a User Interface (UI) utility program that allows a user to select the Sound Demo.
The remainder of this document refers to instructions for running the Sound Demo.

3.3.6.1 STATE CHART OF SOUND DEMO

Figure 3-1 below depicts the possible states for the Sound Demo HMI. These states include Record, Play,
Stop and Quit. The states of the Sound Demo are changed based on the keyboard input from the user.

P P

S S

RReord R Stop P Play

* P - Play

SR - Record
Qutit

* S - Stop

SQ - Quit

Figure 3-1 Sound Demo Sate Diagram

3.4 CONTINGENCIES AND ALTERNATE STATES AND MODES OF OPERATION

N/A

3.5 REQUIREMENTS TRACEABILITY

For requirements traceability, the Software Requirements Specification (SRS) is provided. Refer to that
document for additional information regarding the implemented requirements for vi. 1. 0.

9

3.6 QUALIFICATION PROVISIONS

The JTAP test tool was utilized to perform testing and compliance of the OrcaCF with the requirements
identified in Section 3.5 above. Test Results are available by official request. Send your request to
OrcaCF.gsi(&L-3com.com.

3.7 SECURITY AND PRIVACY

There are currently no security or privacy issues associated with vl.1.0 of the OrcaCF. See Appendix A
to this SUM, entitled License Information, for complete licensing and copyright information associated
with the v .1.0 release of the OrcaCF.

3.8 FEEDBACK

We welcome and encourage any feedback or comments regarding this software. Although the OrcaCF is
provided as is, without any implied or explicit support, your feedback may be used to improve the
software in a future release. For your convenience we have provided a form on the following page. You
may also contact any of the Software Engineers listed below:

Mike Gudaitis
Email: Mike.Gudaitis@ 1-3com.com.

-OR-

David Hallatt
Email: Dave.Hallatt@l-3com.com.

-OR-

Doug Ackerman
Email: Douglas. Ackerman@ 1-3com. com.

Mailing Address:
L-3 Communications Government Services Inc.
1300B Floyd Avenue, Rome NY 13440
Phone: 315-339-6184
Fax: 315-339-6923

10

3.8.1 FEEDBACK FORM

Instructions:
Please use the form provided below to provide feedback. We welcome and encourage any feedback or
comments regarding this software. This does not however, provide any guarantee of direct support from
L3. Once you have completed this form, please email it to OrcaCF.GSI(JL-3com.com or Fax to: 315-
339-6923.

Your Contact Information
Date:
Name:
Company:
Address:
Phone:
Email:

Computer Environment

Linux Version: F] RED HAT 9.0 F1 Other

OrcaCF Version: F-- v 1. 1.0 F-- Other

Memory: r-1 Less than 512 MB RAM
r1 512 MB RAM, or more

Hard Drive: r-1 Less than 40 GB
rD 40 GB, or more

Audio Card: F1 SoundBlaster Live!
r-1 Other

Processor
Type/Speed

Feedback pertains to:
D1 Documentation E] Source Code E] Suggested Improvement D Error/Bug

Comments:

11

4.0 Access to the software
This section contains step-by-step procedures oriented to the first-time/occasional user. Enough detail is
presented for the user to reliably access the software before learning the details of its functional
capabilities.

4.1 FIRST-TIME USER OF THE SOFTWARE

The following paragraphs provide the instructions to run the vi. 1.0 software application.

4.1.1 EQUIPMENT FAMILIARIZATION

This software requires a standard x86 PC. It is assumed that the user has a working knowledge of how to
operate a standard PC. The user should refer to the appropriate computer manual for the following
information:

a. Procedures for turning on power and making adjustments.

b. Dimensions and capabilities of the visual display screen.

c. Appearance of the cursor, how to identify an active cursor if more than one cursor can appear,
how to position a cursor, and how to use a cursor.

d. Keyboard layout and role of different types of keys and pointing devices.

e. Procedures for turning power off if special sequencing of operations is needed.

4.1.1.1 INFORMATION ON LINUX ENVIRONMENT
The section below is included for those who may not be familiar with certain software, or software
concepts, used for the OrcaCF. This section includes references for further research of a particular topic.

This software has been developed on a PC utilizing the KDE desktop that comes with Red Hat Linux.
The default desktop for most Red Hat Linux installations is the GNOME desktop. The underlying
functionality of Linux applications works the same for each desktop, so you should have no problem
using either one. Website links are provided below if you have any questions regarding use of either
desktop.

o KDE website: http://www.kde.org/

o GNOME website: http://www.gnome.orgl

The bash shell is the default shell when installing most Red Hat Linux distributions. A shell is basically a
command language interpreter. When you open a terminal window (or shell) in Linux, it defaults to the
bash shell. As the terminal window comes up, it reads certain bash specific configuration files. This
terminal window will now only recognize and interpret commands according to the bash shell. It is
important to note that the OrcaCF test scripts were done using the bash shell. You can find more
information about the bash shell at its website, listed below.

o Bash Reference Manual: http://www.gnu.org/manuallbash/index.html

o University of Washington - Shells & Shell Scripts:
http://www.washington.edu/computing/unix/shell.html

Some user environment variables need to be configured to run the OrcaCF scenarios. It is assumed the
user has a working knowledge of the Linux/Unix operating system, as well as standard programming
principles, such as setting environment variables. Red Hat Linux 7.3 has an easy to follow wizard that
guides the user through a simple setup of their account when they first logon. Below are some helpful
web links for beginners to become familiar with these concepts.

o The Single Unix Specification - Environment Variables:
http://www.opengroup.org/onlinepubs/007908799/xbd/envvar.html

12

o Red Hat Linux: http://www.redhat.com[

There are a number of different Editors, File managers, and other applications that come with the Red Hat
distribution of Linux. The instructions in this document do not advocate using a particular application to
perform a particular task. It is up to the user to select the application they prefer. For example, we use
the file manager called Konqueror when browsing for files. Another user may prefer to open a terminal
window and use the command line to search for files. The instructions described below are the methods
we chose to use, but you may freely choose other methods for performing the same tasks.

The installation steps refer to directories on the computer you are working on and it's important to note
that your directories will look different from ours in some instances. We will denote directory differences
by using < > characters. For example, when I logon to our Linux machine my home directory looks
like: /home/dackerman. I will list your directory as: /home/<username>. You would obviously
replace <username> with your actual logon name. Any other directory differences will be represented
in a similar fashion.

Note: Linux is case sensitive. Pay attention to caps and extra spaces. Type paths and commands
exactly as they appear.

4.1.1.2 INFORMATION ON CORBA

The user should have some knowledge of CORBA in order to understand how this application works.
CORBA is the specified standard middleware of the JTRS SCA. A CORBA application has a client and
servant. These terms will be used in the procedures described in this section. For general information on
CORBA, refer to the OMG website http://www.omg.org/gettingstarted/corbafaq.htm. For tutorial
information regarding TAO, the specific ORB used in this application, refer to
http://www.cs.wustl.edu/-schmidt/tutorials-corba.html.

4.1.1.3 INFORMATION ON XML

The user should have some knowledge of XML and XML parsing in order to understand how this
application works. XML is used extensively within the SCA for configuration and control of SCA
components. For general information on XML, refer to the World Wide Web Consortium (W3C) website
http://www.w3.org/XML/. For specific information on the XML parser used for the OrcaCF, XERCES,
refer to the Apache Software Foundation (Apache) website http://xml.apache.org/xerces-c/index.html.

4.1.2 ACCESS CONTROL

Check with your system administrator to set up an account on your computer, and to review the access
and security features of your user account. Follow your local procedures to obtain the following
information, if applicable:

a. How and from whom to obtain a password.

b. How to add, delete, or change passwords under user control.

c. Security and privacy considerations pertaining to the storage and marking of output reports and
other media that the user will generate.

The information generated by this software is unclassified. However, you should follow your local
procedures for handling and storage of the information.

13

4.1.3 INSTALLATION AND SETUP

Below are the steps for installing/setting up OrcaCF:

1. Set up the environment variables required to run this Release on your computer. Open your
Sbash rc file with your preferred editor. Your . bash rc file is located in your home directory

(/home/ <username>). If you don't see the .bashrc file in your home directory, you may

need to select the Show Hidden Files option in the file manager you are using. To do this in
Konqueror, select View->Show Hidden Files.

Add the following lines at the end of the .bashrc file:

* export ORCACF ROOT=$HOME/OrcaCF
* export PATH=$PATH:$ORCACF ROOT/bin
* export LDLIBRARYPATH=$LDLIBRARYPATH:$ORCACFROOT/lib
* export NS OPTIONS="-ORBDottedDecimalAddresses 1 -ORBEndpoint \

iiop://<hostname>:<port> -m 0 -d"
* export CF OPTIONS="-ORBDottedDecimalAddresses 1 -ORBInitRef \

NameService=corbaloc: :<hostname>: <port>/NameService"

The NS OPTIONS and CF OPTIONS environment variables contain parameters that are unique
and must be set by the user. The <hostname> is the HOSTNAME of the machine that OrcaCF
is executed on and the <port:> is a unique port number that will be used by OrcaCF executables.
The NS OPTIONS contains the ORBEndpoint parameter that tells the ORB to listen for
requests on the interface specified by the endpoint. Endpoints are specified using a URL style
format. An example of an IIOP endpoint is:

iiop://localhost:9999

The standard installation of Linux distributions installs a network LOOPBACK interface called
"localhost" with an TIP address of 127.0.0.1. Using "localhost" is recommended for anyone not
familiar with networking. If you have altered the "localhost" interface in any way, the
application may not work properly. The CF OPTIONS environment variable contains the
ORBInitRef parameter, which is the ORB initial reference argument. This argument allows
specification of an arbitrary object reference for an initial service which, in this case, is the
Naming Service. The format is:

-ORBInitRef [ObjectID]=[ObjectURL]

Using "localhost" (recommended), the line would look like this:

-ORBInitRef NameService=corbaloc: :localhost:9999/NameService

The "localhost" and "port" must match for proper CORBA communication.

14

Here is what a typical . bash rc file should look like:

.bashrc

User specific aliases and functions

Source global definitions
if [-f /etc/bashrc]; then

/etc/bashrc
fi

OrcaCF vl.1.0 ENVIRONMENT VARIABLES
export ORCACF ROOT=QHOME/OrcaCF
export PATH=QPATH:$ORCACF ROOT/bin
export LD LIBRARY PATH=QLD LIBRARY PATH:$ORCACF ROOT/lib
export NSOPTIONS="-ORBDottedDecimalAddresses 1 -ORBEndpoint iiop://localhost:9999 -m 0 -d"
export CFOPTIONS="-ORBDottedDecimalAddresses 1 -ORBInitRef \

NameService-corbaloc: :localhost: 9999/NameService"

2. Save the file.

3. After making changes to your . bash rc file, you should log out and then log back in, to ensure
the changes take effect.

4. Place the OrcaCF v1 1 0 binary, tar. gz file into your home directory.
(/home/ <username>/)

5. Extract the OrcaCF vi 1 0 binary. tar. gz file. Open a terminal window, go to your
/home/ <username> directory, and type the following:

"* gunzip OrcaCF v1i1 0 binary.tar.gz <ENTER>
"* tar -xvf OrcaCF vli 0 binary.tar <ENTER>

6. You should now have a directory called: /home/<username>/OrcaCF
The complete directory tree for the OrcaCF directory should look like the following:

15

Name S Size File Type I Modified lPermissions

--. OrcaCF 4.0 KB Directory 2004-06-23 10:11 rwxr-xr-x

S . bin 4.0 KB Directory 2004-06-14 15:19 rwxr-xr-x

. tapplicationhmi 61.5 KB Executable File 2004-06-14 15:02 rwxr-xr-x

7 applications 123 B Plain Text 2004-06-14 16:01 rw-r--r--

t!Ndomainbooter 760.4 KB Executable File 2004-06-14 15:01 rwxr-xr-x

t....•eventviewer 61.9 KB Executable File 2004-06-14 15:02 rwxr-xr-x

. tlogservice 70.3 KB Executable File 2004-06-14 15:02 rwxr-xr-x

. tlogviewer 60.4 KB Executable File 2004-06-14 15:02 rwxr-xr-x

t... \NamingService 303.6 KB Executable File 2004-06-14 15:19 rwxr-xr-x

.. tnodebooter 259.2 KB Executable File 2004-06-14 15:02 rwxr-xr-x

*.tsounddemoassemblycontroller 123.6 KB Executable File 2004-06-14 16:03 rwxr-xr-x

tsounddemoresource 163.8 KB Executable File 2004-06-14 15:03 rwxr-xr-x

.. startApplicationHMI 725 B Shell Script 2004-06-14 15:02 rwxr-xr-x

.. startiDomainBooter 1.3 KB Shell Script 2004-06-14 15:01 rwxr-xr-x

. j startEventViewer 809 B Shell Script 2004-06-14 15:02 rwxr-xr-x

... startLogViewer 801 B Shell Script 2004-06-14 15:02 rwxr-xr-x

v.j startNamingService 858 B Shell Script 2004-06-14 15:01 rwxr-xr-x

.. startNodeBooter 848 B Shell Script 2004-06-14 15:02 rwxr-xr-x

.. doc 4.0 KB Directory 2004-06-15 08:05 rwxr-xr-x

i .inc 4.0 KB Directory 2004-06-14 15:02 rwxr-xr-x

+..•lib 4.0 KB Directory 2004-06-14 15:41 rwxr-xr-x

X r xml 4.0 KB Directory 2004-06-14 15:03 rwxr-xr-x

7 ReadmeFirstOrcaCF vi 1 0.txt 11.0 KB Plain Text 2004-06-23 09:56 rwxr--r--

Figure 4-1 Example of the OrcaCF Directory Structure

7. You are now ready to run the application. See the instructions in the next section.
4.2 INITIATING A SESSION

The OrcaCF package consists of six executables that are run by the user: the CORBA Naming Service,
the Domain Booter (CoreFramework/Server), the Node Booter (DeviceManager/Server), the Application
HMI, and the optional Event Viewer and Log Viewer. The executables are run using script files. The
scripts for running the executables are listed below:

1. startNamingService
2. startDomainBooter
3. StartNodeBooter
4. startEventViewer (optional)
5. startLogViewer (optional)
6. startApplicationHMI

16

The order in which these scripts are run is important for proper operation of the OrcaCF. Start each script
in sequence, from 1 to 6. If you choose not to run the optional Event Viewer and Log Viewer, you may
omit steps 4 and 5. Instructions for running these scripts are described in the sections that follow. Script
1 starts the Naming Service. Script 2 starts (boots up) the Core Framework. Script 3 starts (boots up) the
DeviceManager. Scripts 1 through 3 launch the appropriate components and make the necessary
connections required to run the Application. Scripts 4 & 5 allow the user to monitor Events and Logs.
Script 6 starts the Application. A terminal window must be opened for each script/executable that you
plan to run.

"**Note: BEFORE you run the Application you should disable the soundserver on your machine. The

soundserver runs by default when any user logs into KDE. To disable this, open the KDE Control
Center and select : Sound->Sound Server. On the General tab uncheck the top box labeled
start aRts soundserver on KDE startup. Click Apply and Accept the change. The
settings described here might be located in a different place depending on which Linux distribution you
have.

When following these instructions for running the vl.1.0 application, it has been assumed that the
installation procedures from Section 1.1.1 have been followed.

4.2.1 RUNNING THE NAMING SERVICE

4.2.1.1 PRE-CONDITIONS

Before starting the Naming Service the following pre-condition(s) must be met.

1. In order to run the Naming Service you must ensure that your environment has been setup
properly, as previously described in Section 1.1.1.

4.2.1.2 STARTUP

The Naming Service runs in a terminal window. Open up a new terminal window and from the prompt
enter the following command: startNamingService and hit <ENTER>. This will start the Naming
Service executable. This executable may need time to complete its own internal boot up process. Do not
move on to the next step until the console window output indicates the executable is running. You should
see the output shown in Figure 4-2 to ensure the executable is running. If you receive a message
indicating 'Permission Denied' you may have to change the file permissions for the user to have execute
privileges. If you experience other problems, check to make sure that the Naming Service is not already
started. Type "top" and hit <ENTER> at the command line to view all processes running. If the
Naming Service is listed as a running process, kill the process and start again. Refer to section 3.2.4
Troubleshooting Tips for additional information on changing file permissions or using the "top" utility.

4.2.1.3 RUNNING

The following output should be seen within the Terminal Window:

17

[dackerman~coelacanth dackerman] $ startNamingService

Starting TAD Naming Service

Notifying ImR of startup

We'll become a NameService

Figure 4-2 Example Screenshot Showing Start of Naming Service

4.2.2 RUNNING THE DOMAIN BOOTER (COREFRAMEWORK/SERVER)

4.2.2.1 PRE-CONDITIONS

Before starting the DomainBooter the following pre-condition(s) must be met.

1. In order to run the DomainBooter you must ensure that your environment has been setup
properly, as previously described in Section 1.1.1.

2. In order to run the DomainBooter the Naming Service must be running, as previously described
in Section 4.2.1.

4.2.2.2 STARTUP

The DomainBooter runs in a terminal window. Open up a new terminal window and from the prompt
enter the following command: startDomainBooter and hit <ENTER>. This will start the
DomainBooter executable. This executable may need time to complete its own internal boot up process.
Do not move on to the next step until the console window output indicates the executable is running. You
should see the output shown in Figure 4-3 to ensure the executable is running. If you receive a message
indicating 'Permission Denied' you may have to change the file permissions for the user to have execute
privileges. If you experience other problems, check to make sure that the DomainBooter is not already
started. Type "top" and hit <ENTER> at the command line to view all processes running. If the
DomainBooter is listed as a running process, kill the process and start again. Refer to section 3.2.4
Troubleshooting Tips for additional information on changing file permissions or using the "top" utility.

4.2.2.3 RUNNING

The output shown in Figure 4-3 should be seen within the console for the Domain Booter. The OrcaCF
v I. 1.0 (CoreFramework/Server) is now running and accepting messages sent to it by client applications.
An explanation of the output shown in Figure 4-3 will be provided in the next section 4.2.2.4
Explanation. Stopping the OrcaCF vl.1.0 Server application will be explained in section 4.3 Stopping
and Suspending Work.

18

j~acemaoceacn* : -aoan otr- aosl

[dackermanocoelacanth dackerman] $ startDomainHooter

Starting OrcaC.F Domain Hooter

[DOMAINBOOT]: TAO ORB has been initialized.
[DOMAIN_BOOT]: RootPOA has been initialized.
[DOMAINBOOT]: FDA Manager has been initialized and activated.
[DOMAINBOOT]: Root Naming Context has been obtained.
[DOMAINAMGR]: SERVICE Not Found - CREATE a Fending Connection.
[DOMAIN-MOR]: LogFort created.
[DOMAINAMGR]: DomainManager Configured
[DOMAINHOOT]: DomainManager has been created

DOMAIN HOOTER COMPLETE.
V

Figure 4-3 Example Screenshot Showing Start of the Domain Booter

4.2.2.4 EXPLANATION

This section provides an explanation of the steps shown in the Figure 4-3. Pre-conditions and a detailed
description shall be provided. The pre-conditions are the conditions necessary before execution of the
application. The description shall be a detailed explanation of the work being performed during the
execution of the application.

Pre-Conditions:
* The Naming Service must be running.

Description:
"* The CORBA environment is initialized first. This includes the initialization of

the Object Request Broker (ORB), the Portable Object Adapter (POA), and the
POA Manager.

"* A reference to the Naming Service is obtained.
"* A DomainManager C++ object is created.
"* The DomainManager creates a CF::FileManager.
"* The DomainManager creates a CF::FileSystem.
"* The DomainManager mounts its FileSystem to its FileManager with a

mountpoint of ORCACF ROOT.

"* The DomainManager creates the IDM (Incoming Domain Management) and
ODM (Outgoing Domain Management) Event Channels.

"* The DomainManager parses the DMD (DomainManager Configuration
Descriptor) XML file to obtain the DomainName, DomainManager name, and
any services the DomainManager uses. If services are listed that are not yet
running, the connection will be placed in a Pending Connections list.

"* The DomainManager creates its CORBA object.
"* The DomainManager registers with the Naming Service.
"* The DomainManager creates a PushConsumer CORBA object which consumes

Events.
"* The DomainManager connects to the ODM Event Channel as a PushSupplier.

19

"* The DomainManager's PushConsumer registers with the IDM Event Channel.
"* The DomainManager creates its Log Port (CF::Port).
"* The DomainManager loads previously installed Applications.

4.2.3 RUNNING THE NODE BOOTER (DEVICEMANAGER/SERVER)

4.2.3.1 PRE-CONDITIONS

Before starting the NodeBooter the following pre-condition(s) must be met.

1. In order to run the NodeBooter you must ensure that your environment has been setup properly,
as previously described in Section 1.1.1.

2. In order to run the NodeBooter the Naming Service must be running, as previously described in
Section 4.2.1.

3. In order to run the NodeBooter the DomainBooter must be running, as previously described in
Section 4.2.2.

4.2.3.2 STARTUP

The NodeBooter runs in a terminal window. Open up a new terminal window and from the prompt enter
the following command: startNodeBooter and hit <ENTER>. This will start the NodeBooter
executable. This executable may need time to complete its own internal boot up process. Do not move
on to the next step until the console window output indicates the executable is running. You should see
the output shown in Figure 4-4 to ensure the executable is running. If you receive a message indicating
'Permission Denied' you may have to change the file permissions for the user to have execute privileges.
If you experience other problems, check to make sure that the NodeBooter is not already started. Type
"top" and hit <ENTER> at the command line to view all processes running. If the NodeBooter is listed
as a running process, kill the process and start again. Refer to section 3.2.4 Troubleshooting Tips for
additional information on changing file permissions or using the "top" utility.

4.2.3.3 RUNNING

The output shown in Figure 4-4 should be seen within the console for the NodeBooter. The OrcaCF
vl. 1.0 (DeviceManager/Server) is now running and accepting messages sent to it by client applications.
The output shown in Figure 4-5 should be seen within the console for the DomainBooter. An explanation
of the output shown in the figures below will be provided in the next section 4.2.2.4 Explanation.
Stopping the OrcaCF vl.1.0 Server applications will be explained in section 4.3 Stopping and
Suspending Work.

20

[dackernan~coelacanth dackerman] $ startNodeBooter

Starting OrcaCF Node Booter

[NODEHBOOT]: TAO ORB has been initialized.
[NODEHBOOT]: RootPDA has been initialized.
[NODEBOOT]: PGA Manager has been initialized and activated.
[NODEHBOOT]: Root Naming Context has been obtained.
[DEVICEMGR]: LogPort created.
GUPDEV[I]: GUPDeviceEventFort created.
GUPDEV[2]: GUPDevice Registered with DeviceManager.
[DEVICE-MGR] : GPPDevice created.
AUDIODEV[1]: AudioInPort created.
AUDIODEV[2]: Audio~utPort created.
AUDIODEV[3]: AudioEventPort created.
AUDIODEV[4]: AudioDevice Registered with DeviceManager.
[DEVICEMGR] : AudioDevice created.
[DEVICEMGR]: AudioDevice initialized.
[AUDIODEV]: Configure: BITS/SAMPLE - 16
[AUDIODEV]: Configure: MONO/STEREO - Stereo
[AUDIODEV]: Configure: SAMPLE RATE(Hz) - 16000
[AUDIODEV]: Configure: BLOCK SIZE - 8192
[AUDIODEV]: Configure: BUFFER SIZE - 32768
[DEVICEAMGR]: AudioDevice configured.

<<<<< LAUNCHING [LogService] >>>>>

[LOGSERVICE]: TAO ORB has been initialized.
[LOGSERVICE]: RootPOA has been initialized.
[LOGSERVICE]: PFA Manager has been initialized and activated.
[LOGWSERVICE]: Registering SERVICE with the DeviceManager...
[DEVICEA{GR]: DeviceManager Configured
[NODEHBOOT]: DeviceManager created.

NODE HOOTER COMPLETE.

[DEVICEMCR]: Registered SERVICE with the DeviceManager.
[DEVICEAMGR] : DeviceManager Registered with the DomainManager

LOG SERVICE STARTED.

Figure 4-4 Example Screenshot of NodeBooter Startup

21

DOMAIN BOOTER COMPLETE. A

[DOMAIN¶MGR]: DeviceManager registered with DomainManager.
[DOMAINMGR]: Added a DeviceManager SERVICE to the DOMAIN.
[DOMAINJMGR]: Mounted the DeviceManager's FileSystem to the DOMAIN.
[DOMAINMCR]: Make Pending Component CONNECTIONS.
[DDMAINJMGR]: Made DOMAIN_MANAGER Pending Connection.
[DOMAIN-MGR]: Make Component CONNECTIONS.

4.2.3.4

Figure 4-5 Example Screenshot Showing DomainBooter after NodeBooter Startup

4.2.3.5 EXPLANATION
This section provides an explanation of the steps shown in the figures above. Pre-conditions and a
detailed description shall be provided. The pre-conditions are the conditions necessary before execution
of the application. The description shall be a detailed explanation of the work being performed during the
execution of the application.

Pre-Conditions:
"* The Naming Service must be running.
"* The Domain Booter must be running.

Description:
"* The CORBA environment is initialized first. This includes the initialization of

the Object Request Broker (ORB), the Portable Object Adapter (POA), and the
POA Manager.

"* A reference to the Naming Service is obtained.
"* A DeviceManager C++ object is created.
"* The DeviceManager creates a CF::FileSystem.
"* The DeviceManager creates its CORBA object.
"* The DeviceManager creates its Log Port (CF::Port).
"* The DeviceManager parses its DCD (Device Configuration Descriptor) XML file

to determine what components need to be launched upon boot up.
"* The DeviceManager obtains the DomainManager from the Naming Service.
"* The DeviceManager launches the components listed in the DCD XML file.
"* The DeviceManager registers with the DomainManager, once all the components

launched register back with the DeviceManager.
"* The DomainManager adds the DeviceManager's Services and Devices to the

Domain.
"* The DomainManager mounts the DeviceManager's FileSystem to its

FileManager.
"* The DomainManager makes all connections listed in the DeviceManager's DCD

XML file.

22

4.2.4 RUNNING THE EVENT VIEWER

4.2.4.1 PRE-CONDITIONS
Before starting the Event Viewer the following pre-condition(s) must be met.

1. In order to run the Event Viewer you must ensure that your environment has been setup properly,
as previously described in Section 1.1.1.

2. In order to run the Event Viewer the Naming Service must be running, as previously described in
Section 4.2.1.

3. In order to run the Event Viewer the DomainBooter must be running, as previously described in
Section 4.2.2.

4.2.4.2 STARTUP

The Event Viewer runs in a terminal window. Open up a new terminal window and from the prompt
enter the following command: startEventViewer and hit <ENTER>. This will start the Event
Viewer executable. This executable may need time to complete its own internal boot up process. Do not
move on to the next step until the console window output indicates the executable is running. You should
see the output shown in the Figure 4-6 to ensure the executable is running. If you receive a message
indicating 'Permission Denied' you may have to change the file permissions for the user to have execute
privileges. If you experience other problems, check to make sure that the Event Viewer is not already
started. Type "top" and hit <ENTER> at the command line to view all processes running. If the Event
Viewer is listed as a running process, kill the process and start again. Refer to section 3.2.4
Troubleshooting Tips for additional information on changing file permissions or using the "top" utility.

4.2.4.3 RUNNING

The following output shown in Figure 4-6 should be seen within the console for the Event Viewer. The
Event Viewer executable is now running and accepting messages sent to it by client applications. An
explanation of the steps shown in the Figure 4-6 will be provided in the next section 4.2.4.4 Explanation.
Stopping the Event Viewer application will be explained in section 4.3 Stopping and Suspending Work
below.

2I m o c e - - 1 e n.

[dackermanvcoelacanth dackerman] $ startEventViewer

Starting OrcaCF Event Viewer

1. TAO ORE has been initialized.
2. RootFfA has been initialized.
3. FDA Manager has been initialized and activated.
4. Root Naming Context has been obtained.
5. DomainManager has been obtained.
6. EventViewer Consumer has been created.
7. EventViewer Consumer registered with the ODfLChannel
8. EventViewer Consumer registered with the TDKChannel
Running the EventViewer .

Figure 4-6 Example Screenshot Showing Start of the Event Viewer

73

4.2.4.4 EXPLANATION

This section provides an explanation of the steps shown in the figure above. Pre-conditions and a detailed
description shall be provided. The pre-conditions are the conditions necessary before execution of the
application. The description shall be a detailed explanation of the work being performed during the
execution of the application.

Pre-Conditions:
"* The Naming Service must be running.
"* The DomainBooter must be running.

Description:
"* The CORBA environment is initialized first. This includes the initialization of

the Object Request Broker (ORB), the Portable Object Adapter (POA), and the
POA Manager.

"* A reference to the Naming Service is obtained.
"* A reference to the DomainManager is obtained from the Naming Service.
"* Create a PushConsumer CORBA object which consumes Events.
"* Register PushConsumer with the ODM Event Channel.
"* Register PushConsumer with the IDM Event Channel.

4.2.5 RUNNING THE LOG VIEWER

4.2.5.1 PRE-CONDITIONS

Before starting the Log Viewer the following pre-condition(s) must be met.

1. In order to run the Log Viewer you must ensure that your environment has been setup properly,
as previously described in Section 1.1.1.

2. In order to run the Log Viewer the Naming Service must be running, as previously described in
Section 4.2.1.

3. In order to run the Log Viewer the DomainBooter must be running, as previously described in
Section 4.2.2.

4. In order to run the Log Viewer the NodeBooter must be running, as previously described in
Section 4.2.3.

4.2.5.2 STARTUP
The Log Viewer runs in a terminal window. Open up a new terminal window and from the prompt enter
the following command: startLogViewer and hit <ENTER>. This will start the Log Viewer
executable. This executable may need time to complete its own internal boot up process. Do not move
on to the next step until the console window output indicates the executable is running. You should see
the output shown in the Figure 4-7 to ensure the executable is running. If you receive a message
indicating 'Permission Denied' you may have to change the file permissions for the user to have execute
privileges. If you experience other problems, check to make sure that the Log Viewer is not already
started. Type "top" and hit <ENTER> at the command line to view all processes running. If the Log
Viewer is listed as a running process, kill the process and start again. Refer to section 3.2.4
Troubleshooting Tips for additional information on changing file permissions or using the "top" utility.

4.2.5.3 RUNNING

The output shown in Figure 4-7 should be seen within the console for the Log Viewer. The Log Viewer
executable is now running and waiting for a user response. Simply enter '1' to select the DomainLog
and hit <ENTER>. You should see the output shown in Figure 4-8. The user may at any time hit the

24

<SPACEBAR > key to refresh the Log Records displayed in the console window. An explanation of the
output shown in the figures below will be provided in the next section 4.2.5.4 Explanation. Stopping the
Log Viewer application will be explained in section 4.3 Stopping and Suspending Work below.

I' da era oeacnh ogVi ewe - S n sIe 11X

[dackerman~coelacanth dackerman] $ startLogViewer A

Starting OrcaCF Log Viewer

1. TAG ORB has been initialized.
2. RootPOA has been initialized.
3. PFA Manager has been initialized and activated.
4. Root Naming Context has been obtained.
S. DomainManager has been obtained.

AVAILABLE LOGS

1. DomainLog

ENTER the number of an available Log to monitor: l

Figure 4-7 Example Screenshot Showing Start of the Log Viewer

RETRIEVING LOG RECORDS...

0

10S6191682s Ons
DCE.d2d833f4-2673-499b-bO7f-4791931c33bf DomainName
log record type = 7
DomainManager: :deviceManagers ()

Press [SPACEBAR] to refresh
Press 'q' to quit

Figure 4-8 Example Screenshot Showing Log Viewer after Log selection

4.2.5.4 EXPLANATION

This section provides an explanation of the steps shown in the figures above. Pre-conditions and a
detailed description shall be provided. The pre-conditions are the conditions necessary before execution
of the application. The description shall be a detailed explanation of the work being performed during the
execution of the application.

25

Pre-Conditions:
"* The Naming Service must be running.
"* The DomainBooter must be running.
"* The NodeBooter must be running.

Description:
"* The CORBA environment is initialized first. This includes the initialization of

the Object Request Broker (ORB), the Portable Object Adapter (POA), and the
POA Manager.

"* A reference to the Naming Service is obtained.
"* A reference to the DomainManager is obtained from the Naming Service.
"* Obtain and list all available Logs in the Domain.
"* Get a reference to the Log the user selected.
"* Display the Log records when the user presses <SPA CEBAR >.

4.2.6 RUNNING THE APPLICATION HMI (HUMAN MACHINE INTERFACE)

4.2.6.1 PRE-CONDITIONS

Before starting the Application HMI the following pre-condition(s) must be met.

1. In order to run the Application HMI you must ensure that your environment has been setup
properly, as previously described in Section 1.1.1.

2. In order to run the Application HMI the Naming Service must be running, as previously described
in Section 4.2.1.

3. In order to run the Application HMI the DomainBooter must be running, as previously described
in Section 4.2.2

4. In order to run the Application HMI the NodeBooter must be running, as previously described in
Section 4.2.3

4.2.6.2 STARTUP

The Application HMI runs in a terminal window. Open up a new terminal window and from the prompt
enter the following command: startApplicationHMI and hit <ENTER>. This will start the
Application HMI executable. This executable may need time to complete its own internal boot up
process. Do not move on to the next step until the console window output indicates the executable is
running. You should see the output shown in the Figure 4-9 to ensure the executable is running. If you
receive a message indicating 'Permission Denied' you may have to change the file permissions for the
user to have execute privileges. If you experience other problems, check to make sure that the
Application HMI is not already started. Type "top" and hit <ENTER> at the command line to view all
processes running. If the Application HMI is listed as a running process, kill the process and start again.
Refer to section 3.2.4 Troubleshooting Tips for additional information on changing file permissions or
using the "top" utility.

4.2.6.3 RUNNING

The output shown in Figure 4-9 should be seen within the console for the Application HMI. The
Application HMI executable is now running and waiting for a user response.

26

[dackermanlcoelacanth dackerman]$ startApplicationHlI

Starting Application HMI

1. TAO ORE has been initialized.
2. RootFOA has been initialized.
3. FOA Manager has been initialized and activated.
4. Root Naming Context has been obtained.
S. DomainManager has been obtained.

AVAILABLE APPLICATION FACTORIES

1. Sound Demo

To CREATE an Application, ENTER the number of an available
Application Factory listed above and press ENTER: I

Figure 4-9. Example Screenshot Showing Application HMI Startup

There should be one available ApplicationFactory to select from called "Sound Demo". This is a Demo
Application that acts as a Sound Recorder. Type the number '1' in the console window and hit
<ENTER>.

You will then be asked for a name of an Application you wish to create. Type in any name (e.g. myApp)
and hit <ENTER>. The output shown in Figure 4-10 should be seen within the terminal window for the
Application HMJ.

Viakranceaa I .h Il Kplct nHI-IKnIsleM 1
AVAILABLE APPLICATION FACTORIES

i. Sound Demo

To CREATE an Application, ENTER the number of an available

Application Factory listed above and press ENTER: I

Enter a NAME for the Application you wish to CREATE: myApp

Created Application: myApp

Press 'p' to RUN the Application in FLAY mode.
Press 'r' to RUN the Application in RECORD mode.
Press 's' to STOP the Application.
Press 'q' to QUIT the Application.

Figure 4-10 Example Screenshot Showing Application HMI After Application Creation

27

The following output shown in Figure 4-11 should now be seen within the terminal window for the
NodeBooter.

Vi ia erano oelc*h -- N e ol - Kons -:8 1

NODE BOOTER COMPLETE.

[DEVICEAMGR]: Registered SERVICE with the DeviceManager.
[DEVICEMGR]: DeviceManager Registered with the DomainManager

LOG SERVICE STARTED.

<<<« < LAUNCHING [SoundDemoAssemblyController] >>>>>

[TACLAUNCBR]J: TAO ORE has been initialized.
[TACLAUNCHER]: RootPOA has been initialized.
[TACQLAUNCHERJ: POA Manager initialized and activated.
TESTASSMCONTROL[1]: AudioControlPort created.
¶ESTASSMCONTRQL [2]: SoundDemoResourceControlPort created.

TEST ASSEMHLY CONTROLLER LAUNCHED.

<<<«< LAUNCHING [SoundDemoResource] >>>>>

[TRJLAUNCHER]: TAG ORB has been initialized.
[TRJLAUNCHER]: Rootr0A has been initialized.
[TRLAUNCHER]: POA Manager initialized and activated.
SoundDemoResource [1] : FilelOPort created.
SoundDemoResource[2]: Data2utiort created.
SoundDemoResource[3]: DataInlort created.

TEST RESOURCE LAUNCHED.

0

Figure 4-11. Example Screenshot Showing NodeBooter After Application Creation

The Figure 4-11 is the result of selecting an ApplicationFactory and creating a
new Application. Creation of the Application initiates the launching of the
TestAssemblyController[CF::Resource] and the TestResource [CF::Resource] on

the GPPDevice[CF: :ExecutableDevice].

The following output shown in Figure 4-12 should be seen within the terminal window for the
DomainBooter.

28

Viakraloeaat: Dmai *oe .- *ost B01
DOMAIN BOOTER COMPLETE.

[DOMAINMGR]: DeviceManager registered with DomainManager.
[DOMAINMCR]: Added a DeviceManager SERVICE to the DOMAIN.
[DOMAINUMCR]: Mounted the DeviceManager's FileSystem to the DOMAIN.
[DOMAINMGR]: Make Pending Component CONNECTIONS.
[DOMAINMGR]: Made DOMAINJANAGER Pending Connection.
[DOMAINJMCR]: Make Component CONNECTIONS.

<<<<< CREATING APPLICATION: myApp >>>>>

[APPFACT] :application created
[APPFACT] :naming context created
[APPFACT] :components allocated
[A2PPFACT] :uses devices allocated
[APPFACT] :components loaded
[APPFACT] :components executed
[APPFACT] :components resolved
[APPFACT] :factory components created
[AFPFACT] :components initialized
[APPFACT]:assembly controller set
[APPFACT] :connections made
[APPIFACT] :components configured
[APPFACT] :assembly controller configured
[APPFACT] :external ports retrieved
[APPFACT] :event sent
[APPIFACT] :wrote log
[APPFACT] :registered with DomainManager

Figure 4-12. Example Screenshot Showing DomainBooter After Application Creation

Figure 4-12 shows the DomainBooter console window after running the

startAppli cat ionHMI script and creating an Application.

The following output shown in Figure 4-13 should be seen within the terminal window for the Event
Viewer.

2 .- I e

Running the EventViewer . . .

ODiLCHANNEL.

Domain Managment Object Added Event.
Producer ID: DCE:fe7c55bD-Ze3d-1ld7-beeb-Oc04fS8458aia
Source ID: DCE : fe7c55bD-2e3d-fld7-beeb-OOcO4fSg458a :myApp
Source Name: myApp
Source Type: Application

Figure 4-13. Example Screenshot Showing Event Viewer After Application Creation

29

* Figure 4-13 shows the Events generated from running the
st artApp li cat i onHMI script and creating an Application.

At this point you may hit the <SPACEBAR> in the Log Viewer console window to view the Log activity
at any time. The following output shown in Figure 4-14 shows the Log Viewer console window after
user interaction described above.

RETRIEVING LOG RECORDS...

0

ID6191682s Ons
DCE. d2d833f4-2673-499b-bO7f-4791931c33bf DomainName
log record type = 7
DomainManager:: deviceManagers()

7I
1086191820s Ons
DCE. d2d833f4-2673-499b-bO7f-479193lc33bf DomainName
log record type = 7
DomainManager::applicationFactories()

2
10S6191866s Ons
DCE .d2d833f4-2673-499b-bOlf-47919flc33bf DomainName
log record type = 7
DomainManager::fileMgr()

3
1OB61W1866s Ons
DCE. d2d833f4-2613-499b-bOlf-479i1Slc33bf DomainName
log record type = 7
DomainManager::deviceManagers()

4
1066191666s 0ns
DCE .d2d833f4-2673-499b-bOlf-479193lc33bf : DomainName
log record type = 7
DomainManager::fileMgr()

5
1086191866s Ons
DCE. d2d833f4-2673-499b-bO7f-4791931c33bf DomainName
log record type = 7
DomainManager::fileMgr()

6
i086191868s Ons
DCE:fe7cSSbD-2e3d-Ild7-beeb-Q~cD4fS8458a : Sound Demo
log record type = 7
applicationFactory::create:created

Press [SPACEBAR] to refresh
Press 'q' to quit

Figure 4-14. Example Screenshot Showing Log Activity in the Log Viewer

30

Before you start recording, you may need to adjust the microphone input volume by using KMix, which
comes with Red Hat Linux 9.0. Take note that the red light under the microphone is selected, this ensures
the microphone is on. This tool may look different depending on which Linux distribution you are
running and what sound card you have installed. An example of this tool bar is illustrated in Figure
4-15. KMix can be accessed from the following path:

KStart -> Sound & Video -> Sound Mixer

Eile Soelings Help

I I... I I I I fI I.. .irrr rr rr.,
I

Figure 4-15. KMix toolbar for adjusting audio I/O.

> Press the <r> key on your keyboard to start the Application in RECORD mode. You may now
talk into the microphone. Your voice will be recorded to a Sound File in the OrcaCF directory.

> Press the <s> key to stop recording.

> Press the <p> key on your keyboard to start the Application in PLAY mode. You should be able
to hear your voice that you previously recorded. You can adjust the quality and volume by using
Kmix.

> Press the <s> key to stop playing.

> Press the <q> key to quit the Application.

The output in Figure 4-16 shows the Application HMI console window after the user interaction
described above.

31

viakraocpaat: -Apicto HMI - no l xl

1. Sound Demo

To CREATE an Application, ENTER the number of an available
Application Factory listed above and press ENTER: I

Enter a NAME for the Application you wish to CREATE: myApp

Created Application: myApp

Press 'p' to RUN the Application in PLAY node.
Press 'r' to RUN the Application in RECORD node.
Press 's' to STOP the Application.
Press 'q' to QUIT the Application.

• *{{{ RECORDING }}}***

S**{{{ STOPPING }}}***

***{{{ PLAYING }}}*

•'~{{{ STOPPING }}}4

Quitting the application...

=== ApplicationHMI TERMINATED

[dackermanCcoelacanth dackerman] $

Figure 4-16. Example Screenshot Showing Application HMI After User Interaction

Note: OrcaCF does not currently allow the user to restart the Application HMI without first terminating all of the
other console windows <ctrl><c>. If the user chooses to RECORD some voice input, stop the Application, and
begin RECORDING again, the new voice input is appended to the Sound File. PLAYING the Sound File will
play all recording sessions performed during the life of the Application.

4.2.6.4 EXPLANATION

This section provides an explanation of the steps shown in the figures above. Pre-conditions and a

detailed description shall be provided. The pre-conditions are the conditions necessary before execution
of the application. The description shall be a detailed explanation of the work being performed during the
execution of the application.

Pre-Conditions:

"* The Naming Service must be running.
"* The DomainBooter must be running.

"* The NodeBooter must be running.

Description:

32

"* The CORBA environment is initialized first. This includes the initialization of
the Object Request Broker (ORB), the Portable Object Adapter (POA), and the
POA Manager.

"* A reference to the Naming Service is obtained.
"* A reference to the DomainManager is obtained from the Naming Service.
"* Obtain and list all available Application Factories in the Domain.
"* The user selects an Application Factory and a name for an Application.
"* The Application Factory parses the SAD (Software Assembly Descriptor) XML

file to determine what components to allocate, load, and execute.
"* The Application Factory makes the connections that are listed in the SAD XML

file.
"* The Application Factory creates a CF::Application.
"* When the user selects <r> the Application gets configured in RECORD mode

and starts recording from the microphone.
"* When the user selects <s> the Application is stopped.
"* When the user selects <p> the Application gets configured in PLAY mode and

starts playing the soundfile.
"* When the user selects <s> the Application is stopped.
"* When the user selects <q> the Application is torn down.

4.3 STOPPING AND SUSPENDING WORK

To conclude your session, you must first shutdown/kill all the OrcaCF processes in the following order:

"* Application HMI: When you see the "ApplicationHMI TERMINATED" message, simply
close the console window.

"* Log Viewer: Shut down the Log Viewer (if it is running). This is accomplished by hitting
the <q> key. You should see the prompt and cursor return to the window when the Log
Viewer is shut down. Once this is observed, simply close the console window.

"* Event Viewer: Shut down the Event Viewer (if it is running). This is accomplished by
pressing <ctrl><c> in the console window that you used to start it. You should see the
prompt and cursor return to the window when the Event Viewer is shut down. Once this
is observed, simply close the console window.

"* NodeBooter: Shut down the NodeBooter. This is accomplished by pressing <ctrl><c> in
the console window that you used to start it. You should see the prompt and cursor return
to the window when the NodeBooter is shut down. Once this is observed, simply close
the console window.

"* DomainBooter: Shut down the DomainBooter. This is accomplished by pressing
<ctrl><c> in the console window that you used to start it. You should see the prompt and
cursor return to the window when the DomainBooter is shut down. Once this is observed,
simply close the console window.

"* Naming Service: Shut down the Naming Service. This is accomplished by pressing
<ctrl><c> in the console window that you used to start it. You should see the prompt and
cursor return to the window when the Naming Service is shut down. Once this is
observed, simply close the console window.

Once the Application has been terminated, all terminal windows can be closed. In order to restart the
OrcaCF vl. 1.0 application, repeat the steps in section 4.2 Initiating a Session.

33

4.4 UNINSTALLING THE APPLICATION

Uninstalling the OrcaCF vi. 1.0 is very straight forward. Simply delete the entire OrcaCF directory and
remove entries made in your . bash r c file during installation.

5.0 Software Support Information
5.1 "AS BUILT" SOFTWARE DESIGN

Appendix D, Software Design, has been included with this SUM to provide design information regarding
the OrcaCF. Appendix D is located in the same directory as this SUM and is named
"OrcaCFSUMAppDSoftwareDesignv l_l_0.pdf'.

6.0 Copyright Notice

Copyright (c) 2004 L-3 Communications Government Services Incorporated (GSI). All rights
reserved.

The Open Radio Communications Architecture Core Framework (OrcaCF) is a Core Framework
implementation of the Software Communications Architecture (SCA) specification version 2.2.
It includes a CORBA ORB, and an XML DOM parser. The SCA Spec is available from
http ://jtrs.army.milI.

By downloading, installing, using, or modifying this software and/or software documentation,
the user agrees to be bound by the terms and conditions of this license, and those licenses of any
3rd party products included in this distribution. This agreement does not limit User's rights
under, or grant User rights that supercede, the license terms of any particular component
included in this distribution.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License (LGPL) as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. A copy of the LGPL is
distributed with this software, and can also be obtained from the web site
http://www.gnu.org/copyleft/gpl.html.

UNITED STATES GOVERNMENT RIGHTS: This software was produced for the US
Government under Contract No. F30602-01-C-0205, Air Force Research Laboratory (AFRL),
Department of the Air Force, and is subject to the Rights in Noncommercial Computer Software
and Noncommercial Computer Software Documentation Clause (DFARS) 252.227-7014 (June
1995).

THE LICENSEE AGREES THAT THE US GOVERNMENT WILL NOT BE CHARGED
ANY LICENSE FEE AND/OR ROYALTIES RELATED TO EITHER THIS SOFTWARE OR
SOFTWARE DOCUMENTATION.

Third Party Licenses:

Some software components used in the development of the OrcaCF are subject to the GNU
General Public License such as RED HAT Linux, Fedora Linux, Konqueror, and Kdevelop.

ACE/TAO is made available under the "open source software" model. ACE(TM) and TAO(TM)
are copyrighted by Douglas C. Schmidt and his research group at Washington University,

34

University of California, Irvine, and Vanderbilt University Copyright (c) 1993-2003, all rights
reserved. The ACE/TAO license can be found at the following web site:
http://www.cs.wustl.edu/-schmidt/ACE-copying.html.

This product includes software developed by the Apache Software Foundation
http://www.apache.org/. The Xerces-C++ XM1L parser is available in both source distribution
and binary distribution. Xerces-C++ is made available under the Apache Software License vi. 1.
A copy of the Apache Software License can be found at their web site:
http://xml.apache.org/LICENSE.

Trademarks: "RED HAT" and "FEDORA" are registered trademarks of Red Hat, Inc. "Linux" is
a registered trademark of Linus Torvalds. ACE and TAO are registered trademarks of Douglas
C. Schmidt and Washington University. All other trademarks are the property of their respective
owners.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that they reproduce the above copyright notice, this list of conditions, and the following
disclaimer in the documentation, source code, and/or other materials provided with the
distribution. See the LPGL for more details on the license terms and conditions.

NO WARRANTY:

JTRS SOFTWARE OR DOCUMENTATION IS PROVIDED "AS IS," WITHOUT
WARRANTIES OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE. MOREOVER, JTRS SOFTWARE OR DOCUMENTATION IS
PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF
THE U.S. GOVERNMENT, JTRS JPO, JTEL, AFRL, L-3 COMMUNICATIONS
GOVERNMENT SERVICES INCORPORATED, SPAWARSYSCEN CHARLESTON,
SPAWARSYSCEN SAN DIEGO OR ITS EMPLOYEES TO ASSIST IN ITS USE,
CORRECTION, MODIFICATION, OR ENHANCEMENT.

THE U.S. GOVERNMENT, JTRS JPO, JTEL, AFRL, L-3 COMMUNICATIONS
GOVERNMENT SERVICES INCORPORATED, SPAWARSYSCEN CHARLESTON,
SPAWARSYSCEN SAN DIEGO AND ITS EMPLOYEES SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR
ANY PATENTS BY JTRS SOFTWARE OR DOCUMENTATION OR ANY PART THERE
OF. MOREOVER, IN NO EVENT WILL THE U.S. GOVERNMENT, JTRS JPO, JTEL,
AFRL, L-3 COMMUNICATIONS GOVERNMENT SERVICES INCORPORATED,
SPAWARSYSCEN CHARLESTON, SPAWARSYSCEN SAN DIEGO OR ITS EMPLOYEES
BE LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES INCLUDING BUT NOT LIMITED TO
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA, OR
BUSINESS INTERRUPTIONS HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) RISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

35

THE NAMES JTRS SOFTWARE, JTRS DOCUMENTATION, JTRS JPO, JTEL,
SPAWARSYSCEN CHARLESTON AND SPAWARSYSCEN SAN DIEGO MAY NOT BE
USED TO ENDORSE OR PROMOTE PRODUCTS OR SERVICES DERIVED FROM THIS
SOURCE WITHOUT EXPRESS WRITTEN PERMISSION FROM THE PROGRAM
DIRECTOR, JTRS JPO. FURTHER, PRODUCTS OR SERVICES DERIVED FROM THIS
SOURCE MAY NOT BE CALLED JTRS SOFTWARE, NOR MAY THE NAMES JTRS JPO,
JTEL, SPAWARSYSCEN CHARLESTON, OR SPAWARSYSCEN SAN DIEGO APPEAR IN
THEIR NAMES, WITHOUT EXPRESS WRITTEN PERMISSION FROM THE PROGRAM
DIRECTOR, JTRS JPO.

EXPORT LAWS: THIS LICENSE ADDS NO RESTRICTIONS TO THE EXPORT LAWS OF
YOUR JURISDICTION. It is the licensee's responsibility to comply with any export regulations
applicable in the licensee's jurisdiction. Under CURRENT (July 2003) U.S. export regulations
the following countries are designated U.S. embargoed countries. These include: Burma
(Myanmar), Cuba, Iraq, Libya, North Korea, Iran, Syria, Sudan, Zimbabwe, and any other
country to which the U.S. has embargoed goods and services.

EXPORT CONTROL: As required by U.S. law, User represents and warrants that it: (a)
understands that the Software is subject to export controls under the U.S. Commerce
Department's Export Administration Regulations ("EAR"); (b) is not located in a prohibited
destination country under the EAR or U.S. sanctions regulations (currently Cuba, Iran, Iraq,
Libya, North Korea, Sudan and Syria); (c) will not export, re-export, or transfer the Software to
any prohibited destination, entity, or individual without the necessary export license(s) or
authorizations(s) from the U.S. Government; (d) will not use or transfer the Software for use in
any sensitive nuclear, chemical or biological weapons, or missile technology end-uses unless
authorized by the U.S. Government by regulation or specific license; (e) understands and agrees
that if it is in the United States and exports or transfers the Software to eligible end users, it will,
as required by EAR Section 741.17(e), submit semi-annual reports to the Commerce
Department's Bureau of Industry & Security (BIS), which include the name and address
(including country) of each transferee; and (f) understands that countries other than the United
States may restrict the import, use, or export of encryption products and that it shall be solely
responsible for compliance with any such import, use, or export restrictions.

Point of Contact:

For questions regarding support of this software, please send inquiries to
OrcaCF.GSIOL-3Com.com
For questions related to the OrcaCF project, contact Michael Gudaitis
Email: mike.gudaitis@L-3Com.com, Phone 315-339-6184
For JTRS questions, refer to http://jtrs.army.mil.

7.0 Notes
This section contains notes and general information regarding the OrcaCF vi. 1.0 software package.

36

7.1 LIST OF APPENDICES.

All appendices to this SUM are contained within the same directory as this document.

7.1.1 APPENDIX A: LICENSE INFORMATION

This Appendix to the SUM is intended to inform the user of their legal rights for modifying and
redistributing the software and documentation included in the Orca Core Framework Software Package.

Reference: OrcaCFSUMApp-A&Licenselnformation vl1_0_.pdf

7.1.2 APPENDIX B: DEVELOPERS NOTES

This Appendix to the SUM provides general guidance as it relates to programming of the OrcaCF. This
document does not cover design or style, but instead provides lessons learned and practical advice for
developers to ensure a stable application and consistent source code. Although much of the material
covered in the Developers Notes can be reused for other projects, it has been specifically created for the
OrcaCF project.

Reference: OrcaCFSUMApp-B-DevelopersNotes vl1_0_.pdf

7.1.3 APPENDIX C: COMPILATION BUILD PROCEDURES

This Appendix to the SUM provides general guidance as it relates to setting up, compiling, and building,
the Orca Core Framework (OrcaCF) vi. 1.0 project

Reference: OrcaCFSUMApp-C-CompilationBuildProcedures vl1_0_.pdf

7.1.4 APPENDIX D: SOFTWARE DESIGN

This Appendix to the SUM provides an "as-built" design of the Orca Core Framework (CF) vl.1.0. This
information gives reviewers an overview of the OrcaCF software design in Unified Modeling Language
(UML) format. The design diagrams presented in this document were created with Rational Rose
Enterprise Edition.

Reference: OrcaCFSUMApp-D-SoftwareDesign vll_0_.pdf

7.1.5 APPENDIX E: ERRATA

This Appendix to the SUM explains discrepancies among baselined documentation.

Reference: OrcaCFSUMAppEErrata vl1_0_.pdf

7.1.6 APPENDIX F: RELEASE NOTES

This Appendix to the SUM provides notes to developers and users describing changes made since the last
release of the LinuxCF software package.

Reference: OrcaCFSUMAppjF ReleaseNotes vll__0.pdf

7.1.7 APPENDIX G : CODE STYLE GUIDE

This Appendix to the SUM provides general guidance as it relates to the programming style of the
OrcaCF. This document does not cover design or technique, but instead provides a programming style to
ensure consistent and readable source code. This Style Guide is used by the L-3 development team as a
reference while programming the OrcaCF.

Reference: OrcaCFSUMApp-G-CodeStyleGuide.pdf

37

7.2 ACRONYMS

A
ACE ADAPTIVE Communication Environment
ADC Analog-to-Digital Converter
AFRL Air Force Research Laboratory
ALE Automatic Link Establishment
AM Amplitude Modulation
API Application Program Interface
ASIC Application Specific Integrated Circuits
ASIP Advanced System Improvement Program (SINCGARS)
ASN.1 Abstract Syntax Notation 1
ATC Air Traffic Control
B
BLOS Beyond Line Of Sight
bps Bits per Second
C
C31 Command, Control, Communications & Intelligence
C41 Command, Control, Communications, Computers & Intelligence
CASE Computer-Aided Software Engineering
CDRL Contract Data Requirements List
CD-ROM Compact Disk- Read Only Memory
CF Core Framework
CI Configuration Item
CM Configuration Management
CMM Capability Maturity Model
CNI Communications, Navigation and Identification
COM Computer Operation Manual
CORBA Common Object Request Broker Architecture standardized by OMG
COTS Commercial Off-the-Shelf
CP Change Proposal
cPCI compact Personal Computer Interface
CPM Computer Programming Manual
CR Change Report
CRC Communications Research Centre
CSCI Computer Software Configuration Item
D
DAC Digital-to-Analog Converter
DAMA Demand Assigned Multiple Access
DASA Demand-Assigned Single Access
DBDD Database Design Description
DCR Document Change Request
DID Data Item Description
DII/COE Defense Information Infrastructure / Common Operating Environment
DoD Department of Defense
DODI Department of Defense Instruction
DoN Department of Navy

38

DSP Digital Signal Processor
DTD Document Type Description
E
ECCM Electronic Counter-Counter Measure
ECP Engineering Change Proposal
EKMS Electronic Key Management System
EMI Electromagnetic Interference
EPLRS Enhanced Position Location Reporting System
F
FM Frequency Modulation
FOT Functional Operability Testing
FPGA Field Programmable Gate Arrays
FQT Formal Qualification Test
FSM Firmware Support Manual
FY Fiscal Year (Military October to September)
G
GFI Government Furnished Information
GHz Giga Hertz (One Billion Cycles per second)
GP General Purpose
GPS Global Positioning System
GUI Graphical User Interface
H
HCI Human-Computer Interface
HMI Human-Machine Interface
HQ Have Quick
HW Hardware
HWCI Hardware Configuration Item
I
IA Information Assurance
IDD Interface Design Description
IDE Integrated Development Environment
IDL Interface Definition Language standardized by OMG
IDM Incoming Domain Manager
WEEE Institute of Electronics and Electrical Engineers
IF Intermediate Frequency
INFOSEC INFOrmation SECurity
JOC Initial Operational Capability
TIP Internet Protocol
IRS Interface Requirements Specification
IV&V Independent Verification and Validation
IVT Interface Validation Tests
i
JPO Joint Program Office
JTA Joint Technical Architecture
JTAP JTRS Test Application
JTeL JTRS Technology Laboratory
JTRS Joint Tactical Radio System

39

K
KPA Key Process Area
L
LAN Local Area Network
LCCB Local Configuration Control Board
OrcaCF Linux Core Framework
LCM Life Cycle Maintenance
LOS Line Of Sight
LPD Low Probability of Detection
LPE Low Probability of Exploitation
LPI Low Probability Of Intercept
M
MHz Mega Hertz (One Million Cycles per second)
MLS Multi-Level Security
MNS Mission Needs Statement
MSC Message Sequence Chart
N
NB Narrow Band
NSA National Security Agency
0
OCD Operational Concept Description
OE Operating Environment
ODM Outgoing Domain Manager
OMG Object Management Group
OOD Object-Oriented Design
OPEVAL Operational Evaluation
ORB Object Request Broker
OrcaCF Open Radio Communication Architecture
ORD Operational Requirements Document
OS Operating System
OT&E Operational Test & Evaluation
OTAR Over The Air Rekey
OTAT Over The Air Transfer
OTAZ Over The Air Zeroize
P
PAL Process Asset Library
PC Personal Computer
PDR Preliminary Design Review
PKI Public Key Infrastructure
POA Portable Object Adapter
POSIX Portable Operating System Interface for UNIX
PP Program Package
PR Problem Report
PSM Practical Software Measurement
PTR Program Trouble Report
PWF Pilot Waveform

40

Q
QA Quality Assurance
R
RF Radio Frequency
RM Requirements Management
RMP Requirements Management Plan
RTOS Real-Time Operating System
S
SATCOM SATellite COMmunications
SATURN Second Generation Anti-Jam Tactical UHF Radio for NATO. Defined in

STANAG 4372.
SCA Software Communications Architecture
SCCB System Configuration Control Board
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCOM Software Center Operator Manual
SDD Software Design Description
SDF Software Development File
SDL Software Development Library
SDP Software Development Plan
SDR Software Defined Radio
SDR Forum Software Defined Radio Forum
SEE Software Engineering Environment
SEI Software Engineering Institute
SEM-E Standard Electronic Module - E (size)
SEN Software Engineering Notebook
SEPG Software Engineering Process Group
SEPO Software Engineering Process Office
SINCGARS Single Channel Ground and Airborne Radio System
SIOM Software Input/Output Manual
SIP Software Installation Plan
SLOC Source Lines of Code
SOW Statement of Work
SPE Software Product Evaluation
SPI Software Process Improvement
SPIP Software Process Improvement Plan
SPM Software Project Manager
SPP Software Project Plan
SPS Software Product Specification
SPTO Software Project Tracking and Oversight
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SQER Software Quality Evaluation Report
SQT System Qualification Test
SRD Support and Rationale Document
SRS Software Requirements Specification
SSC-SD SPAWAR Systems Center San Diego

41

SSDD System/Subsystem Design Description
SSS System/Subsystem Specification
STD Software Test Description
STE Software Test Environment
STP Software Test Plan
STR Software Trouble Report
STrP Software Transition Plan
SU Software Unit
SUM Software User Manual
SVD Software Version Description
SW Software
SYSCOM System Command
T
TAO The ACE ORB
TECHEVAL Technical Evaluation
TRANSEC Transmission Security
TR Test Review
TTCN Tree and Tabular Combined Notation
U
UHF Ultra High Frequency
UML Universal Modeling Language standardized by OMG
W
WB Wide Band
WBS Work Breakdown Structure
WF Waveform
WTE Waveform Test Environment
WTT Waveform Test Tool
WWW World Wide Web
x
XML eXtensible Markup Language

42

Appendix A. License Information
SCOPE
This document is intended to inform the user of their legal rights for modifying and redistributing the
software and documentation included in the Core Framework Software Package. The license agreement
for this product refers you to this file for details concerning terms and conditions applicable to the Core
Framework Software Package, third party software code included in this product, and for certain notices
and other information L-3 Communications Government Services Inc. must provide to you under its
license to certain software code. The relevant terms and conditions, notices, and other information are
provided or referenced below. By installing any of the software included with this product, the user
agrees to the following terms and conditions.

OVERVIEW

The Open Radio Communication Architecture Core Framework (OrcaCF) Software Package is Copyright
© 2004 L-3 Communications Government Services Inc. All rights reserved.

This work was performed under Contract F30602-01-C-0205, Air Force Research Laboratory (AFRL),
Department of the Air Force, and is subject to the Rights in Noncommercial Computer Software and
Noncommercial Computer Software Documentation Clause (DFARS) 252.227-7014 (June 1995) as
shown in Section Error! Reference source not found.. For complete details of the Core Framework
license see section Error! Reference source not found. Copyright and Licensing Information for the
Core Framework (Documentation) and section Error! Reference source not found. Copyright and
Licensing Information for the Core Framework (Software). Users are permitted to copy and distribute
verbatim copies of this license, but changing it is not allowed without prior permission from L3.

Some software components used in the development for the Linux machines are subject to the GNU
General Public License such as Red Hat Linux, Konqueror, Kdevelop, and Fedora. For complete details
on these items, see section.8.1, 0 and 0 respectively. TAO is made available under the "open source
software" model. The ACE ORB source code is copyrighted by Dr. Douglas C Schmidt and the
Distributed Object (DOC) research group at Washington University in St. Louis. For complete details of
the ACE/TAO licensing terms see section 0. You may also visit the ACE/TAO Licensing web site at
http://www.theaceorb.comIproduct/license.html.

"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." The Xerces-C++ XML Parser is available in both source distribution and
binary distribution. Xerces-C++ is made available under the Apache Software License. A copy of this
license is included in section 0. You may also visit the Apache Software License web site at
http://xml.apache.org/LICENSE.

In addition to Linux, Microsoft Windows NT 4.0 machines were used for development. Microsoft,
Windows, Windows 95, Windows NT, and Windows 2000 are either registered trademarks or trademarks

43

of Microsoft Corporation in the U.S. and/or other countries. All other trademarks are the property of their
respective owners.

Licenses

UNITED STATES GOVERNMENT RIGHTS: This software and software documentation was produced
for the US Government under Contract No. F30602-01-C-0205, Air Force Research Laboratory,
Department of the Air Force, and is subject to the Rights in Noncommercial Computer Software and
Noncommercial Computer Software Documentation Clause (DFARS) 252.227-7014 (June 1995).

THE LICENSEE AGREES THAT THE US GOVERNMENT WILL NOT BE CHARGED ANY
LICENSE FEE AND/OR ROYALTIES RELATED TO EITHER THIS SOFTWARE OR SOFTWARE
DOCUMENTATION.

By downloading, installing, using, or modifying this software and/or software documentation, the user
agrees to be bound by the terms and conditions of this license, and those licenses of any 3rd party products
included in this distribution. This agreement does not grant User rights that supercede, or limit User
rights under, the license terms of any particular component included in the distribution.

EXPORT LAWS: THIS LICENSE ADDS NO RESTRICTIONS TO THE EXPORT LAWS OF
YOUR JURISDICTION. It is the licensee's responsibility to comply with any export regulations

applicable in the licensee's jurisdiction. Under CURRENT (July 2004) U.S. export regulations
the following countries are designated U.S. embargoed countries. These include: Burma
(Myanmar), Cuba, Iraq, Libya, North Korea, Iran, Syria, Sudan, Zimbabwe, and any other

country to which the U.S. has embargoed goods and services.

GNU LESSER GENERAL PUBLIC LICENSE (LGPL)

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
http://www.gnu.org/licenses/lgpl.html

Everyone is permitted to copy and distribute verbatim copies of this license, but changing it is not
allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library
Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages--
typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it
too, but we suggest you first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the explanations below.

44

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to
ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it. For example, if you distribute copies of the library,
whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make
sure that they, too, receive or can get the source code. If you link other code with the library, you must
provide complete object files to the recipients, so that they can relink them with the library after making
changes to the library and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what they
have is not the original version, so that the original author's reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs. When a program is linked with a library, whether
statically or using a shared library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore permits such linking only
if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library. We call this license the "Lesser" General Public License
because it does Less to protect the user's freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing non-free programs. These
disadvantages are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed
to use the library.

A more frequent case is that a free library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free software only, so we use the Lesser General
Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in non-
free programs enables many more people to use the whole GNU operating system, as well as its variant,
the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the

45

users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom
and the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a "work based on the library" and a "work that uses the library". The former
contains code derived from the library, whereas the latter must be combined with the library in order to
run.

Terms and Conditions for Copying, Distribution and Modification

1. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called "this License"). Each licensee
is addressed as "you". A "library" means a collection of software functions and/or data prepared
so as to be conveniently linked with application programs (which use some of those functions
and data) to form executables. The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the Library" means either the
Library or any derivative work under copyright law: that is to say, a work containing the Library
or a portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".) "Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library. Activities other than copying, distribution and
modification are not covered by this License; they are outside its scope. The act of running a
program using the Library is not restricted, and output from such a program is covered only if its
contents constitute a work based on the Library (independent of the use of the Library in a tool
for writing it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

2. You may copy and distribute verbatim copies of the Library's complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and distribute a copy of this License
along with the Library. You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when the

46

facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful. (For example, a function in a library to compute
square roots has a purpose that is entirely well-defined independent of the application. Therefore,
Subsection 2d requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still compute
square roots.) These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the Library, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights
or contest your rights to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library. In addition, mere
aggregation of another work not based on the Library with the Library (or with a work based on
the Library) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

4. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of to
this License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change
in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and derivative works
made from that copy. This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

5. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you
accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange. If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same place
satisfies the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

6. A program that contains no derivative of any portion of the Library, but is designed to work with
the Library by being compiled or linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of
this License. However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the Library), rather
than a "work that uses the library". The executable is therefore covered by this License. Section
6 states terms for distribution of such executables. When a "work that uses the Library" uses
material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is
especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law. If such an object file
uses only numerical parameters, data structure layouts and accessors, and small macros and

47

small inline functions (ten lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables containing this object code
plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative
of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

7. As an exception to the Sections above, you may also combine or link a "work that uses the
Library" with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the work
for the customer's own use and reverse engineering for debugging such modifications. You must
give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the
work during execution displays copyright notices, you must include the copyright notice for the
Library among them, as well as a reference directing the user to the copy of this License. Also,
you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the
complete machine-readable "work that uses the Library", as object code and/or source code, so
that the user can modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of definitions files
in the Library will not necessarily be able to recompile the application to use the modified
definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism
is one that (1) uses at run time a copy of the library already present on the user's computer
system, rather than copying library functions into the executable, and (2) will operate properly
with a modified version of the library, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already
sent this user a copy. For an executable, the required form of the "work that uses the Library"
must include any data and utility programs needed for reproducing the executable from it.
However, as a special exception, the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable. It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally accompany the operating system.
Such a contradiction means you cannot use both them and the Library together in an executable
that you distribute.

48

8. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and of
the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based
on the Library, and explaining where to find the accompanying uncombined form of the same
work.

9. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

10. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Library (or any work based on the Library), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying the Library or
works based on it.

11. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties with this License.

12. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not permit royalty-
free redistribution of the Library by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library. If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is intended to apply, and the section
as a whole is intended to apply in other circumstances. It is not the purpose of this section to
induce you to infringe any patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

49

13. If the distribution and/or use of the Library is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Library under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

14. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. Each version is given a
distinguishing version number. If the Library specifies a version number of this License which
applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published
by the Free Software Foundation.

15. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

16. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

17. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY
OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS (GNU LGPL)

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA

GNU Free Documentation License (FDL)

50

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

51

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 4.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also

52

clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

a. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

b. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

c. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

d. Preserve all the copyright notices of the Document.

e. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

f. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

53

g. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

h. Include an unaltered copy of this License.

i. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

j. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

k. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

1. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

m. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

n. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

o. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

54

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements.'"

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond
what the individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will prevail.

55

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

END OF TERMS AND CONDITIONS (GNU FDL)

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA

GNU General Public License (GPL)

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This General Public License applies to most of
the Free Software Foundation's software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

56

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions for Copying, Distribution and Modification

1. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you". Activities other than copying, distribution
and modification are not covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program. You may charge a fee for the physical act of
transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

57

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Program. In addition, mere
aggregation of another work not based on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

58

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

59

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS (GNU GPL)

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA

The ACE ORB (TAO)

Introduction

TAO is made available under the "open source software" model. The source is freely downloadable, open
for inspection, review and comment. Copies may be freely installed across all your systems and those of
your customers. The source code is designed to be compiled and used across a wide variety of hardware
and operating systems architectures. Target systems include UNIX systems, including Linux; MS
Windows platforms, and real time platforms such as VxWorks, Lynx and pSOS.

60

The ACE ORB source code is copyrighted by Dr. Douglas C Schmidt and the Distributed Object (DOC)
research group at Washington University in St. Louis. The actual terms are given below, are also included
in TAO documentation from OCI and the OCI distributions of TAO on CDs. TAO is made available by
means of an open source model. TAO may be used without the payment of development license or run
time fees. It also means that the TAO source may be made available along, with any added value
products, which utilize TAO. The distributions on CD contain the source code for ACE and TAO, in
accordance with those requirements.

TAO also includes software from Sun Microsystems. This software is related to the IDL compiler and
11OP. This software also may be freely distributed without fees. The licensing details are included below.

TAO under certain circumstances also uses a software program called GPERF. This software was also
written by Dr. Schmidt and is licensed under the terms of the Free Software Foundation's GNU Public
License (GPL). Details on this licensing may also be found below.

Please read the licensing information prior to purchase if you have any concerns and to fully understand
your obligations as a user.

Copyright and Licensing Information for ACE(TM) and TAO(TM)

The ACE ORB source code is copyrighted by Dr. Douglas C Schmidt and the Distributed Object
Computing (DOC) research group at Washington University in St. Louis. The actual terms are reproduced
on the CD. TAO is made available by means of an open source model. TAO may be used without the
payment of development license or run time fees. TAO source code may be made available along, with
any added value products, which utilize TAO. This distribution contains not only the source code for
ACE and TAO, in consonance with the spirit of open source practices, but also added value products such
as installation scripts, object code for debugging and binaries for commonly used platforms. These are
referred to as the software programs. OCI is the authorized distributor of TAO products and services. The
use of the ACE, The ACE ORB and TAO trade or service marks is by permission of Washington
University.

Warranty

ACE and TAO are provided as is, with no warranties of any kind, including the warranties of design,
merchantability and fitness for a particular purpose, non-infringement, or arising from a course of dealing,
usage or trade practice. Moreover, ACE and TAO are provided with no support and without any
obligation on the part of Washington University, its employees, or students to assist in its use, correction,
modification, or enhancement.

Year 2000

Both ACE and TAO have been designed to be Y2K-compliant, as long as the underlying OS platform is
Y2K-compliant.

Liability

Washington University, its employees, and students shall have no liability with respect to the
infringement of copyrights, trade secrets or any patents by ACE and TAO or any part thereof. Moreover,
in no event will Washington University, its employees, or students be liable for any lost revenue or profits
or other special, indirect and consequential damages.

61

Trademarks

The names ACE(TM), TAO(TM), and Washington University may not be used to endorse or promote
products or services derived from this source without express written permission from Washington
University. Further, products or services derived from this source may not be called ACE(TM) or TAO(TM),

nor may the name Washington University appear in their names, without express written permission from
Washington University.

Copyright and Licensing Information for GPERF

GPERF is a standalone software program. GPERF generates perfect hash functions for lookups based on
a set of key words when the key words are known in advance. They are called perfect hash functions
because only a single access into the data structure is needed in order to perform a lookup. When the set
of IDL operations is known in advanced TAO uses the perfect hash functions generated by GPERF in
order to perform the operation lookup in constant time. Similarly servant lookups can be done, if the set
of servants is known in advanced.

GPERF was originally developed by Professor Douglas Schmidt. Professor Schmidt subsequently signed
the copyright over to the Free Software Foundation, causing gperf to be licensed under the GPL (GNU
General Public License). The FSF still maintains that version of gperf. When perfect hashing was added
as an option to TAO, gperf was selected to provide that function. It was extended and enhanced to meet
the more demanding needs of TAO and a derived version was placed in the ACE application libraries.
When using TAO under certain circumstances you may elect to use that version of gperf, which is part of
the ACE distribution of examples and optional programs. Both the current FSF gperf and the ACE gperf
are based on the original implementation. Since the ACE gperf is derived from the original GPL'ed
version, it too is licensed under the GPL.

The following terms are found in the source files for gperf:

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

To receive a copy and more information about the GNU General Public License write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, or visit their
web site http://www.gnu.org.

COPYRIGHT AND LICENSING INFORMATION FOR IIOP AND THE IDL COMPILER FRONT-
END

TAO utilizes software obtained/derived from Sun Microsystems. One product implements the Object
Management Group's (OMG) Internet Inter-ORB Protocol. You may copy, modify, distribute, or
sublicense the licensed product without charge as part of a product or software program developed by

62

you, so long as you preserve the functionality of inter-operating with the Object Management Group's
"Internet Inter-ORB Protocol" (IIOP) Version one.

A second Sun product implements an OMG Interface Definition Language compiler front end. You may
also include this product freely in any distribution, and may modify it, as long as you do not remove
functionality.

In both cases you must not use Sun Microsystems name, logo etc. in any subsequent distribution or
promotion of your product, and you must include the licensing terms in their entirety.

The detailed Sun licensing terms, are as follows:

Copyright and Licensing for Sun Products

Copyright 1995 Sun Microsystems, Inc.

All Rights Reserved.

This notice applies to allfiles in this software distribution that were originally derived from SunSoft HOP
code. (Such files contain Sun Microsystems copyright notices).

This software product (LICENSED PRODUCT), implementing the Object Management Group's "Internet
Inter-ORB Protocol", is protected by copyright and is distributed under the following license restricting
its use. Portions of LICENSED PRODUCT may be protected by one or more U.S. or foreign patents, or
pending applications.

LICENSED PRODUCT is made available for your use provided that you include this license and
copyright notice on all media and documentation and the software program in which this product is
incorporated in whole or part.

You may copy, modify, distribute, or sublicense the LICENCED PRODUCT without charge as part of a
product or software program developed by you, so long as you preserve the functionality of inter-
operating with the Object Management Group's "Internet Inter-ORB Protocol" version one. However,
any uses other than the foregoing uses shall require the express written consent of Sun Microsystems, Inc.

The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used in
advertising or publicity pertaining to distribution of the LICENSED PRODUCT as permitted herein.

This license is effective until terminated by Sun for failure to comply with this license. Upon termination,
you shall destroy or return all code and documentation for the LICENSED PRODUCT.

LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING,
USAGE OR TRADE PRACTICE.

LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION
ON THE PART OF SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS
USE, CORRECTION, MODIFICATION OR ENHANCEMENT.

SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY WITH
RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS
BY LICENSED PRODUCT OR ANY PART THEREOF.

63

IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR
ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This notice applies to the files used in the IDL Compiler front-end:

Copyright 1992, 1993, 1994 Sun Microsystems, Inc.All Rights Reserved.

This product is protected by copyright and distributed under the following license restricting its use.

The Interface Definition Language Compiler Front End (CFE) is made available for your use provided
that you include this license and copyright notice on all media and documentation and the software
program in which this product is incorporated in whole or part. You may copy and extend functionality
(but may not remove functionality) of the Interface Definition Language CFE without charge, but you are
not authorized to license or distribute it to anyone else except as part of a product or program developed
by you or with the express written consent of Sun Microsystems, Inc. ("Sun").

The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used in
advertising or publicity pertaining to distribution of Interface Definition Language CFE as permitted
herein.This license is effective until terminated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the Interface Definition Language
CFE.

INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF
ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF
DEALING, USAGE OR TRADE PRACTICE.

INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED WITH NO SUPPORT AND WITHOUT
ANY OBLIGATION ON THE PART OF SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES TO
ASSIST IN ITS USE, CORRECTION, MODIFICATION OR ENHANCEMENT.

SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY WITH
RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS
BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART THEREOF.

IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR
ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Both Sun software products are also covered by the following: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.SunOS, SunSoft, Sun,
Solaris, Sun Microsystems and the Sun logo are trademarks or registered trademarks of Sun
Microsystems, Inc.

SunSoft, Inc.
2550 Garcia Avenue
Mountain View, California 94043

Apache Xerces C++ XML Parser

The Apache Software License, Version 1.1
Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

64

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment:

"This product includes software developed by the Apache Software Foundation
http://www.apache.org/." Alternately, this acknowledgment may appear in the software itself, if
and wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission,
please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in
their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS OFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation and was originally based on software copyright (c) 1999, International Business
Machines, Inc., http://www.ibm.com/. For more information on the Apache Software Foundation, please
see http://www.apache.org.

Red Hat Linux / Konqueror / Kdevelop

General

As used herein, "EULA" means an end user license agreement, and "Software Programs" means,
collectively, the Linux Programs, the Third-Party Programs, the Sun Programs, as each of those terms is
defined herein.

Red Hat Linux is a modular operating system made up of hundreds of individual software components,
each of which was written and copyrighted individually. Each component has its own applicable end user
license agreement. Throughout this document the components are referred to, individually and
collectively, as the "Linux Programs." Most of the Linux Programs are licensed pursuant to a Linux
EULA that permits you to copy, modify, and redistribute the software, in both source code and binary

65

code forms. However, you must review the on-line documentation that accompanies each of the Linux
Programs included in this product for the applicable Linux EULA. Review these Linux EULAs carefully,
in order to understand your rights under them and to realize the maximum benefits available to you with
Red Hat Linux. Nothing in this license agreement limits your rights under, or grants you rights that
supercede, the terms of any applicable Linux EULA.

The "Linux Applications CD - Productivity Edition", and the "Linux Applications CD - Server Edition",
include an assortment of applications from third-party vendors. Throughout this document each of these
software components are referred to, individually and collectively, as "Third-Party Programs." Generally,
each of these Third-Party Programs is licensed to you by the vendor pursuant to an end user license
agreement ("Third-Party EULA") that generally permits you to install each of these products on only a
single computer for your own individual use. Copying, redistribution, reverse engineering, and/or
modification of these components may be prohibited, and you must look to the terms and conditions of
the Third-Party EULA to determine your rights and any limitations imposed on you. Any violation by you
of the applicable Third-Party EULA terms shall immediately terminate your license under that Third-
Party EULA. For the precise terms of the Third-Party EULAs for each of these Third-Party Programs,
please check the on-line documentation that accompanies each of them. If you do not agree to abide by
the applicable license terms for these Third-Party Programs, then do not install them on your computer. If
you wish to install these Third-Party Programs on more than one computer, please contact the vendor of
the program to purchase additional licenses.

The Star Office CD includes software licensed to you from Sun Microsystems, Inc., hereinafter, the "Sun
Programs." For the precise terms of the license to you for these Sun Programs, please check the on-line
documentation that accompanies them or review the Star Office End User Binary Code License posted at
www.redhat.com/licenses. If you do not agree to abide by the applicable license terms for these Sun
Programs, then do not install them on your computer.

Red Hat Linux itself is a collective work under U.S. copyright law. Subject to the trademark use
limitations set forth in this Agreement, Red Hat grants you a license in the collective work pursuant to the
GNU General Public License.

Before Installation

CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE INSTALLING ANY
OF THE SOFTWARE PROGRAMS. INSTALLING THE SOFTWARE PROGRAMS INDICATES
YOUR ACCEPTANCE TO THE TERMS AND CONDITIONS SET FORTH IN THIS DOCUMENT
AND OF THE END USER LICENSE AGREEMENT ASSOCIATED WITH THE SOFTWARE
PROGRAM. IF YOU DO NOT AGREE WITH THESE TERMS AND CONDITIONS, DO NOT
INSTALL THE SOFTWARE PROGRAMS.

THE SOFTWARE PROGRAMS, INCLUDING SOURCE CODE, DOCUMENTATION,
APPEARANCE, STRUCTURE AND ORGANIZATION, ARE PROPRIETARY PRODUCTS OF RED
HAT, INC. AND OTHERS AND ARE PROTECTED BY COPYRIGHT AND OTHER LAWS. TITLE
TO THESE PROGRAMS, OR TO ANY COPY, MODIFICATION OR MERGED PORTION OF ANY
OF THESE PROGRAMS, SHALL AT ALL TIMES REMAIN WITH THE AFOREMENTIONED,
SUBJECT TO THE TERMS AND CONDITIONS OF THE APPLICABLE EULA RELATED TO THE
SOFTWARE PROGRAMS UNDER CONSIDERATION.

THE "RED HAT" TRADEMARK AND RED HAT'S SHADOW MAN LOGO ARE REGISTERED
TRADEMARKS OF RED HAT, INC. IN THE UNITED STATES AND OTHER COUNTRIES. WHILE
THIS LICENSE AGREEMENT ALLOWS YOU TO COPY, MODIFY AND DISTRIBUTE THE
SOFTWARE, IT DOES NOT PERMIT YOU TO DISTRIBUTE THE SOFTWARE UTILIZING RED

66

HAT'S TRADEMARKS. YOU SHOULD READ THE INFORMATION FOUND AT
http://www.redhat.com/about/trademark guidelines.html BEFORE DISTRIBUTING A COPY OF
THE SOFTWARE, REGARDLESS OF WHETHER IT HAS BEEN MODIFIED.

CERTAIN LIMITED TECHNICAL SUPPORT SERVICES ACCOMPANY RED HAT LINUX. THE
RIGHT TO USE THOSE TECHNICAL SUPPORT SERVICES ARE LIMITED TO THE ORIGINAL
PURCHASE OF THE PRODUCT FROM EITHER RED HAT OR A RED HAT AUTHORIZED
DISTRIBUTOR. WHILE YOU HAVE THE RIGHT TO TRANSFER YOUR COPY OF RED HAT
LINUX TO ANOTHER PARTY, YOU MAY NOT TRANSFER THE RIGHT TO USE THOSE
TECHNICAL SUPPORT SERVICES ONCE YOU HAVE ACTIVATED YOUR PRODUCT FOR
SUPPORT. ANY ATTEMPT TO TRANSFER TECHNICAL SUPPORT SERVICES FOLLOWING
ACTIVATION WILL RENDER YOUR RIGHT TO THE TECHNICAL SUPPORT SERVICES NULL
AND VOID.

Limited Warranty
EXCEPT AS SPECIFICALLY STATED IN THIS AGREEMENT OR IN AN EULA, THE SOFTWARE
PROGRAMS ARE PROVIDED AND LICENSED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A
PARTICULAR PURPOSE.

Red Hat, Inc. warrants that the media on which any of the Software Programs are furnished will be free
from defects in materials and manufacture under normal use for a period of 30 days from the date of
delivery to you. Red Hat, Inc. does not warrant that the functions contained in the Software Programs will
meet your requirements or that the operation of the Software Programs will be entirely error free or
appear precisely as described in the accompanying documentation.

ANY WARRANTY OR REMEDY PROVIDED UNDER THIS AGREEMENT EXTENDS ONLY TO
THE PARTY WHO PURCHASES RED HAT LINUX FROM RED HAT OR A RED HAT
AUTHORIZED DISTRIBUTOR.

Limitation of Remedies and Liability

To the maximum extent permitted by applicable law, the remedies described below are accepted by you
as your only remedies, and shall be available to you only if you or your dealer registers this product with
Red Hat, Inc. in accordance with the instructions provided with this product within ten days after delivery
of the Software Programs to you.

Red Hat, Inc.'s entire liability, and your exclusive remedies, shall be: if the Software Programs media are
defective, you may return them within 30 days of delivery to you along with a copy of your receipt and
Red Hat, Inc., at its option, will replace them or refund the money paid by you for the Software Programs.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL
RED HAT, INC. BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING LOST PROFITS,
LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING
OUT OF THE USE OR INABILITY TO USE THE SOFTWARE PROGRAMS, EVEN IF RED
HAT, INC. OR A DEALER AUTHORIZED BY RED HAT, INC. HAD BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

GENERAL

67

If any provision of this Agreement is held to be unenforceable, that shall not effect the enforceability of
the remaining provisions. This Agreement shall be governed by the laws of the State of North Carolina
and of the United States, without regard to any conflict of laws provisions.

Copyright © 2002 Red Hat, Inc. All rights reserved. "Red Hat" and the Red Hat "Shadow Man" logo are
registered trademarks of Red Hat, Inc. "Linux" is a registered trademark of Linus Torvalds. All other
trademarks are the property of their respective owners.

FEDORA TM License Agreement

This agreement governs the download, installation or use of the Software (as defined below) and any
updates to the Software, regardless of the delivery mechanism. The Software is a collective work under
U.S. Copyright Law. Subject to the following terms, Fedora Project grants to the user ("User") a license
to this collective work pursuant to the GNU General Public License. By downloading, installing or using
the Software, User agrees to the terms of this agreement.

1. The Software. Fedora Core (the "Software") is a modular Linux operating system consisting of
hundreds of software components. The end user license agreement for each component is located
in the component's source code. With the exception of certain image files containing the Fedora
trademark identified in Section 2 below, the license terms for the components permit User to
copy, modify, and redistribute the component, in both source code and binary code forms. This
agreement does not limit User's rights under, or grant User rights that supersede, the license terms
of any particular component.

2. Intellectual Property Rights. The Software and each of its components, including the source code,
documentation, appearance, structure and organization are copyrighted by Fedora Project and
others and are protected under copyright and other laws. Title to the Software and any
component, or to any copy, modification, or merged portion shall remain with the
aforementioned, subject to the applicable license. The "Fedora" trademark is a trademark of Red
Hat, Inc. ("Red Hat") in the U.S. and other countries and is used by permission. This agreement
permits User to distribute unmodified copies of Software using the Fedora trademark on the
condition that User follows Red Hat's trademark guidelines located at
http://fedora.redhat.com/legal/. User must abide by these trademark guidelines when distributing
the Software, regardless of whether the Software has been modified. If User modifies the
Software, then User must replace all images containing the "Fedora" trademark. Those images
are found in the anaconda-images and the fedora-logos packages. Merely deleting these files may
corrupt the Software.

3. Limited Warranty. Except as specifically stated in this agreement or a license for a particular
component, to the maximum extent permitted under applicable law, the Software and the
components are provided and licensed "as is" without warranty of any kind, expressed or implied,
including the implied warranties of merchantability, non-infringement or fitness for a particular
purpose. Neither the Fedora Project nor Red Hat warrants that the functions contained in the
Software will meet User's requirements or that the operation of the Software will be entirely error
free or appear precisely as described in the accompanying documentation. Use of the Software is
at User's own risk.

4. Limitation of Remedies and Liability. To the maximum extent permitted by applicable law,
Fedora Project and Red Hat will not be liable to User for any damages, including incidental or

68

consequential damages, lost profits or lost savings arising out of the use or inability to use the
Software, even if Fedora Project or Red Hat has been advised of the possibility of such damages.

5. Export Control. As required by U.S. law, User represents and warrants that it: (a) understands that
the Software is subject to export controls under the U.S. Commerce Department's Export
Administration Regulations ("EAR"); (b) is not located in a prohibited destination country under
the EAR or U.S. sanctions regulations (currently Cuba, Iran, Iraq, Libya, North Korea, Sudan and
Syria); (c) will not export, re-export, or transfer the Software to any prohibited destination, entity,
or individual without the necessary export license(s) or authorizations(s) from the U.S.
Government; (d) will not use or transfer the Software for use in any sensitive nuclear, chemical or
biological weapons, or missile technology end-uses unless authorized by the U.S. Government by
regulation or specific license; (e) understands and agrees that if it is in the United States and
exports or transfers the Software to eligible end users, it will, as required by EAR Section
741.17(e), submit semi-annual reports to the Commerce Department's Bureau of Industry &
Security (BIS), which include the name and address (including country) of each transferee; and
(f) understands that countries other than the United States may restrict the import, use, or export
of encryption products and that it shall be solely responsible for compliance with any such
import, use, or export restrictions.

6. General. If any provision of this agreement is held to be unenforceable, that shall not affect the
enforceability of the remaining provisions. This agreement shall be governed by the laws of the
State of North Carolina and of the United States, without regard to any conflict of laws
provisions, except that the United Nations Convention on the International Sale of Goods shall
not apply.

7. Copyright © 2003 Fedora Project. All rights reserved. "Red Hat" and "Fedora" are trademarks of
Red Hat, Inc. "Linux" is a registered trademark of Linus Torvalds. All other trademarks are the
property of their respective owners. For more information, see http://fedora.redhat.com/licenses.

69

Appendix B. Developers Notes

70

Scope
This document describes notes to developers, including guidelines and best practices used for the
development of the Open Radio Communications Architecture Core Framework (OrcaCF). These were
distilled from engineering notes and design decisions made during the development. Much of the
material in this document is specific to the OrcaCF development, which utilizes ANSI C++, CORBA,
ACE/TAO and Linux.

Overview

This Appendix to the Software Users Manual (SUM) provides general guidance as it relates to
programming of the OrcaCF. This document does not cover design or style, but instead provides lessons
learned and practical advice for developers to ensure a stable application and consistent source code.
Although much of the material covered in the Developers' Notes can be reused for other projects, it has
been specifically created for the OrcaCF project.

The Developers Notes are used by the OrcaCF development team as a reference while implementing the
OrcaCF. It currently covers the development resources utilized by the OrcaCF. The remaining sections
of this document are organized in the following manner.

Section 0 is a list of reference documents.

Section 10.0 provides ANSI C++ and Standard Template Library (STL) programming guidelines.

Section 0 provides CORBA specific programming guidelines.

Section 0 provides guidelines that are specific to ACE/TAO.

Section 0 provides reference material for working with XML.

Relationship to Other Documents

The Developers Notes provide a standard set of rules for coding the OrcaCF that goes beyond the basic
programming styles covered in the Code Style Guide. The intent of appending this document to the SUM
is to provide lessons learned by the OrcaCF development team and to aid in the review of the application.

71

Referenced Documents

a. Redhat Linux website: http://www.redhat.com
b. ACE/TAO websites: http://www.cs.wustl.edu/-schmidt/TAO.html, http://www.theaceorb.com/
c. OCI TAO Developers Guide version 1.2a, volume 1&2 (Part numbers 510-01, 510-02), Object

Computing Inc., 2002.
d. Pure CORBA by Fintan Bolton, 5th Edition, ISBN 0-672-321812-1. Sam's Publishing, 2002.
e. Advanced CORBA Programming with C++, by Michi Henning & Steve Vinoski,

ISBN 0-201-37927-9. Addison-Wesley 1999.
f. ANSI String Class by Dr. Mark J. Sebern, version 1.7, 12/14/1999

http://www.msoe.edu/eecs/cese/resources/stl/string.htm
g. STL Vector Class by Dr. Mark J. Sebern, version 1.5, 12/14/1999

http://www.msoe.edu/eecs/cese/resources/stl/vector.htm
h. The Waite Groups' Object-Oriented Programming in C++, Third Edition, by Robert LaFore:

1999.

72

ANSI C++ & STL

Memory Management

Due to the structure of the OrcaCF, it is essential that memory management be handled carefully and
thoroughly. Improper memory management can quickly lead to an unstable OrcaCF implementation.
This section addresses the creation, allocation, deallocation and destruction of C++ objects used by the
OrcaCF.

Object Creation

Any C++ objects that are created must be released. If an object is created explicitly within a function or
class, it will be automatically deallocated when it goes out of scope. If a C++ object is allocated
implicitly with a pointer reference, the object must be deallocated before the pointer goes out of scope.

All objects should be allocated using the 'new' directive. By using the 'new' directive, objects are
allocated on the heap, without the 'new' directive, objects are allocated on the stack. The heap is a more
stable memory space for objects than the stack.

File myFile = new File(; /7 created explicitly

File * pMyFile = new File(; /7 created implicitly

Object Destruction

If a C++ object is created explicitly, it will automatically be cleaned up when it goes out of scope. If a
C++ object is allocated implicitly with a pointer reference, it must be cleaned up in one of the following
manners:

a. Call an object function that releases the object. (i.e. fcloseO on a File object).
j. Use the delete operator of the object if it was created on the heap. (i.e. created using the 'new'

directive).
k. Use the destroy operator if the object was not created on the heap. This will call the object's

destructorO function.
1. Pass ownership of the object to CORBA using the the poa->activate-object() function call.

Whenever an object is deallocated, the pointer should first be checked for NULL to ensure the object was
not previously deallocated. If the pointer is not NULL, the object should be deallocated and the pointer
set to NULL as shown in the example below.

Example:
if (pMyFile != NULL)

I
delete pMyFile;

pMyFile = NULL;
I

The above code snippet should be included at the end of any function, or within any exception blocks
where a C++ object has been allocated. The above code snippet should also be included within a class
destructoro if there are any class member variables that are C++ objects.

Strings

During the development of the OrcaCF, memory allocation/deallocation problems ("Memory Leaks")
were encountered. Debugging and tracking of these memory leaks were performed, the cause was

73

determined to be a manipulation of strings. The initial intention of the OrcaCF File Service design was to
utilize the CORBA: :Stringsvar type and ACEOS string manipulation functions for portability. Research
was performed and a design decision was made to utilize the std::string class from the C++ Standard
Template Library. Implementation of the std::string class cleared up the memory leaks and was carried
through all existing code and will be utilized throughout the rest of the development. For information on
how to use the std::string class, refer to section 0.0 above.

An additional note concerning the use of the std::string class pertains to the use of the c str(operation for
returning const char * data from a function call. This should never be done because the string is
deallocated upon exit of the function and the data can be corrupted by the time the calling function
receives the data. In order to avoid this problem, the std::string value should be copied into a
CORBA::Stringvar and the ._retnO function of the CORBA::Stringvar utilized within the return
statement. An example of this can be seen below.

string var = CORBA::string dup(string.c str());
return string var._retn(),

Sequential Containers

During implementation of the OrcaCF, it became necessary to track and maintain sequences of CORBA
Objects that were not defined within the IDL. It was then decided to utilize the STL Sequential Container
classes (e.g. Vector, Deque, etc.) to maintain sequences of CORBA Objects.

Upon implementation of the OrcaCF using these container classes, it was discovered that references to
CORBA Objects were not being properly managed. In order to manage CORBA references properly the
following rules need to be applied when using STL container classes with CORBA references.

2. CORBA references stored within container classes should be VAR types. This ensures that
when the container goes out of scope, or when the container element is removed, the CORBA
Object is properly cleaned up.

3. A CORBA reference or a structure containing a CORBA reference should never be pushed
(e.g. push backo, pushjfronto) into a STL container. Instead, an empty element should be
pushed into the container. The element within the container should then be referenced and
populated appropriately.

Here is some example code demonstrating the above process.

std: :vector myvect<CORBA: :String var>;
CORBA: Stringvar emptyString = CORBA: :stringdup(.");
CORBA: :Stringvar myStringl = CORBA: :string dup("my string 1");
CORBA: :String var myString2 = CORBA: :string dup("my string 2");

myvect.pushback(emptyString);
myvect [0] = myStringl;
myvect.pushback (emptyString);
myvect [i] = myString2;

CORBA

Portable Object Adapter (POA)

For the design of each object of the OrcaCF, the POA should be studied and a set of policies determined.
Table 10-1 lists the policies for a POA, along with the defaults for new child POAs and for the Root

74

POA. In most cases, the Root POA will be utilized, but these policies must be reviewed to ensure proper
implementation of a core framework object.

Policy Options Default

LifespanPolicy TRANSIENT TRANSIENT

PERSISTENT

IdAssignmentPolicy USERID SYSTEMID

SYSTEM ID

IdUniquenessPolicy UNIQUEID UNIQUEID

MULTIPLEID

I mplicitActivation Policy IMPLICITACTIVATION root=IMPLICITACTIVATION

NO IMPLICITACTIVATION NOIMPLICITACTIVATION

RequestProcessing Policy USEACTIVEOBJECTMAPON USEACTIVEOBJECTMAPONL
LY Y

USEDEFAULTSERVANT

USE SERVANTMANAGER

Servant Retention Policy RETAIN RETAIN

NON RETAIN

ThreadPolicy ORBCTRLMODEL ORBCTRLMODEL

SINGLE THREADMODEL

Table 10-1 POA policies

Object Creation

Implicit activation of CORBA objects, such as activation of CORBA objects using the _this() function
call, should not be used. According to Pure CORBA (p133-134), it is not always readily apparent what
POA is used in the creation of a CORBA object when using the _this() function call. Also, assuming that
we will always be creating under the rootPOA is a flexibility limitation of our Servants. Instead, we
should be doing the following:

"* Pass in a POA reference through the constructor to any Servant Implementation that will be
creating CORBA Objects; i.e. FileSystem and DeviceManager.

"* Save a local copy of the POA passed to the Servant as mPOAvar. This will be the POA that will
be used whenever that Servant creates a CORBA object. We also need to ensure that the POA
reference is destroyed when the implementation object is destroyed.

"* We should use the explicit CORBA object creation process utilizing the local POA. The
following sample code will accomplish this.

Example:
CF File i* pFile = NULL;

CF::File var file var = CF::File:: nil();

PortableServer: :Objectld_var fileObjld-var;

CORBA: :Object var fileObj-var;

75

pFile = new CF File i(...);
fileObjId var = mPOA var->activate object(pFile, ..

fileObj var = mPOAvar->id to reference(fileObjId-var.in(, ..

file var = CF::File::_narrow(fileObjvar);

return file var. retn();

Using the above for the creation of CORBA objects will ensure that we know what POA is used to
control the object. It also gives us added flexibility to utilize a POA other than the rootPOA to control the
life cycle of an object, along with other POA settings, without explicitly changing the code within the
class.

Parameter Passing

Just about all CORBA objects are passed as a reference in one form or another. The danger in passing
references is keeping track of ownership and cleanup duties. One of the ways that CORBA helps in
keeping track of these items is by providing parameter delimiters. These parameter delimiters are in,
inout, out and _retn. Each one of these will be discussed below in more detail, providing the
responsibilities and some items to watch out for.

.in()

allocation - caller: It is the responsibility of the calling function to allocate this object before passing it
into a function. The caller should use the .ino designator on the object's _var type.

initialization - caller: It is the responsibility of the calling function to ensure that the object has been
initialized. The caller should use the .ino designator on the object's _var type.

deallocation - caller: It is the responsibility of the calling function to deallocate the object. The function
to which this parameter is passed should never deallocate or take ownership of this parameter (i.e. never
set a .ino parameter equal to a _var type). If a persistent copy of a parameter is needed, the _duplicate()
function or the stringjdup(function must be used, and then the callee will be responsible for releasing
that persistent copy.

.Jnout0

allocation - caller: This needs to be dynamically allocated (stringjdup, _ptr or _var) by the caller. For
the OrcaCF, a _var type should always be used with the .inoutO designator.

initialization - caller: It is the responsibility of the calling function to ensure that the object has been
initialized. The caller should use the .inouto designator on the object's _var type.

deallocation - caller: It is the responsibility of the calling function to deallocate the object. The function
to which this parameter is passed is responsible for ensuring that an allocated and initialized parameter is
passed back to the caller. The callee may deallocate, reallocate and re-initialize the parameter, which is
why the parameter must be dynamically allocated.

.outO

allocation - proxy: The proxy object is responsible for the allocation of the parameter. The caller should
not perform this action when using a .outo parameter in a function.

initialization - callee: It is the responsibility of the function called to initialize this parameter.

76

deallocation - caller: Once a .outo parameter has been returned to the calling function, it is the
responsibility of that function to deallocate the parameter.

._retnO

allocation - proxy: Much like the .outo parameter, a return value is allocated by the proxy object.

initialization - callee: The function being called is responsible for initialization of the value to be
returned. A var type with the .retno directive should always be used.

deallocation - caller: Once the calling function has received the return value, it is the responsibility of the
caller to ensure that the return value is deallocated.

Memory Management

CORBA manages memory allocated to objects by maintaining Reference Counts (RC) to the objects.
When the Reference Count reaches 0, the object is deallocated.

CORBA uses three different types for objects, the actual object, which is delineated by a _obj, a simple
pointer, which is delineated by a _ptr, and a smart pointer, which is delineated by a _var. Each
declaration of the object, regardless of CORBA type, will result in the object having an initial Reference
Count of 1. Declaration of each of these object types can be seen below:

CF::File myFile obj = new CF::File(; /7 CORBA object

CF::File * myFile ptr = new CF::File(; /7 CORBA simple pointer

CF::File ptr myFile ptr = new CF::File(; /7 CORBA simple pointer

CF::File_var myFile var = new CF::File(; /7 CORBA smart pointer

The object type is rarely used because the idea behind CORBA is to pass references to objects that are
distributed over a system or network. Simple pointer types reference an object, but do not provide any
memory management on their own. When using simple pointers, objects must be explicitly destroyed
using the CORBA::releaseO function.

Smart pointers, or _var types, are the preferred method of memory management within a CORBA
application. Smart pointers increment the Reference Counts when they are created, and they decrement
the Reference Counts when they are destroyed or go out of scope. When all smart pointers go out of
scope, the Reference Count drops to 0 and the object is destroyed.

77

Regardless of the CORBA type used to reference objects, great care and understanding must be used
when implementing object references, or using the releaseo or duplicateo functions on object references.
Table 10-2 shows a summary of some of the assignment operations and their effect on the object's
Reference Count (RC).

Assignment Effect

my-ptr = your ptr No effect on RC.

My-ptr = your var Does not increase RC, but RC will be decremented by 1 when your var
goes out of scope.

My-var = your ptr Does not change the RC, but RC will still be decremented by 1 when
my-var goes out of scope.

My-var = your var The RC for my var will be decremented by 1. The RC for your var will
be increased by 1, the RC will be decremented by 1 when each _var
goes out of scope.

My-ptr = duplicate(your-ptr) RC is increased by 1, release() must be called on each pointer in order
to deallocate the object.

My-var = duplicate(my-ptr) RC is increased by 1, and will be decremented by 1 when my-var goes
out of scope.

My-var = duplicate(your var) UNSURE OF RESULT TO RC, this type of assignment should only be
used when widening an object reference.

Release(my-ptr) Decrements RC by 1.

RELEASE(MYVAR) DO NOT USE, my var will call releaseo on its own when it goes out
of scope.

Table 10-2 CORBA Assignment Operations

Releasing CORBA Objects

In some cases, a program cannot wait until all of the references to a CORBA Object go out of scope in
order to release itself from the CORBA Environment. Within the SCA there are some particular
requirements where this applies, such as the CF::Resource.releaseObject operation or the CF::File.close
operation. In order to safely release a CORBA Object, there are several steps that must be accomplished.

4. The servant class for the CORBA Object must inherit the public virtual
PortableServer: :RefCountServantBase.

5. The POA must be passed into the servant class constructor and the servant class should
activate itself with the following code.

// activate object
objectId var = mPOAvar->activate-object(this, ACETRYENV);
ACETRYCHECK;
object var = mPOAvar->id to reference(objectId_var.in(), ACETRYENV);
ACETRYCHECK;
mFile var = CF::File::_narrow(object-var.in(), ACETRYENV);
ACETRYCHECK;

// verify reference
if (CORBA: :is nil(mFile var.in()))

I
cout << "File.activateFile:invalid reference" << endl;

78

message var = CORBA: :string dup("invalid reference");
ACETRYTHROW(CF: :FileException(CF: :CFEBADF, message var.in()));
I

/7 Give ownership of Servant to POA

this-> remove ref(ACETRYENV);

ACETRYCHECK;

6. The following code must be used to release the CORBA Object.

// release this Servant from the CORBA Environment

objectID var = mPOAvar->servant to id(this, ACETRYENV);

ACETRYCHECK;

mPOAvar->deactivate object(objectID-var.in(), ACETRYENV);

ACE TRY CHECK;

When calling the POA.deactivateobject operation, several things occur. The POA does not allow for
any additional CORBA calls to occur on the CORBA Object. The pending CORBA calls are processed.
When there are no more CORBA calls to be processed, the CORBA Object is removed from the active
object map and the servant destructor is called.

CORBA::Any

The CORBA::Any is a special data type unique to CORBA. In order to place data into a CORBA::Any
type you must use the insertion operator (<<=), and to extract data from a CORBA::Any type you must
use the extraction operator (>>=).

CORBA::Any types allocate/deallocate memory on their own. In this way, they act very much like _var
types, and deallocate themselves when they go out of scope. Because a CORBA::Any type will try to
deallocate itself, it is important not to extract data to a _var type which will try to deallocate the same
memory space and will possibly cause a core dump. Always extract to _ptr types.

CORBA::Any types should be treated as read-only, as well as the _ptr type that it is extracted to. If a
local copy is needed, or extracted data needs to be modified, use the _duplicateO function to copy the _ptr
to a _var type and work with the _var type.

ACE/TAO

Exception Handling

ACE/TAO provides exception handling macros that accommodate exceptions whether the application
environment does or not. These are being utilized by the OrcaCF to help ensure platform independence.
Three of the most used Try blocks in the OrcaCF are listed below for reference.

Simple Try Block

ACETRY

ACETRYCHECK;

ACE TRY CHECK;

79

if (error)
I
ACE TRY THROW(CF: :InvalidFileName(errno, errmsg));

} /7 end ACE-TRY

ACECATCH(CORBA: :SystemException, exSystem)
I
ACETHROW(CORBA::SystemException);
I

ACECATCH(CF: :FileException, exFile)
I
ACERETHROW;
I

ACEENDTRY;

Multiple Try Block

ACETRYEX(blockl)

ACETRYCHECKEX(blockl);

I // end ACE TRY

ACECATCH(CORBA: :SystemException, exSystem)
I
ACETHROW(CORBA::SystemException);
I

ACEENDTRY;

ACE TRY EX(block2)

ACETRYCHECKEX(block2);

I /7 end ACE-TRY

ACECATCH(CORBA: :SystemException, exSystem)
I
ACETHROW(CORBA::SystemException);
I

ACEENDTRY;

Try Block with Return Value

ACE-TRY

ACE TRY CHECK;

80

ACE TRY CHECK;

if (error)
I
ACETRYTHROW(CF: :InvalidFileName(errno, errmsg));

} // end ACE TRY

ACECATCH(CORBA: :SystemException, exSystem)
I
ACETHROWRETURN(CORBA::SystemException, my var._retn());
I

ACEENDTRY;

ACECHECKRETURN(my var. retn());

Note: According to the TAO Developer's Guide, version 1.2a (p121):

"In environments that have C++ exceptions, ACECHECK and ACECHECKRETURN are
identical, as are ACETHROW and ACETHROWRETURN. In environments that do not
have native C++ exceptions, however, these macros give us the ability to write code that
compiles successfully and functions properly."

Basically, C++ exceptions must be disabled for the ACECHECKRETURN and ACETHROW
-RETURN to function properly (i.e. return a value).

XML

Symbol Reference

Table 10-3 shows a list of XML symbols and associated definitions that are used within the DTDs
provided with SCA 2.2. These definitions are provided for quick reference and ease of interpretation of
the XML used with the OrcaCF. The table below represents only a small subset of the XML symbols and
definitions.

81

Symbol Definition
* 0..n relationship

+ 1..n relationship

"? 0..1 relationship

I Select one of several elements

EMPTY Element can contain only attributes

ID Represents the ID attribute type defined in the XML 1.0 Recommendation. The ID

must be a no-colon-name (NCName) and must be unique within an XML document.
This data type is derived from NCName.

PCDATA PCDATA is text occurring in a context in which markup and entity references may
occur. PCDATA describes the simplest XML structure of all, namely, plain text
enclosed between a tag pair.

CDATA An attribute of CDATA type can contain any character if it conforms to well
formedness constraints. Everything inside a CDATA section is ignored by the
parser. If your text contains a lot of "<" or "&" characters - as program code often
does - the XML element can be defined as a CDATA section. A CDATA section
starts with "<![CDATA[" and ends with "]]>" A CDATA section cannot contain the
string "]]>", therefore, nested CDATA sections are not allowed. Also make sure
there are no spaces or line breaks inside the "]]>" string.

Table 10-3 XML Symbols

82

Appendix C. Compilation Build Procedures

83

Scope

This document will provide general guidance for OrcaCF development using Red Hat Linux. However, it
is not written for the novice user as it assumes that the user has a working knowledge of the Linux/Unix
operating system and standard programming principles.

Document Overview

The remaining sections of this document are organized in the following manner:

Section 0 provides a list of references used to create this document.

Section 0 provides a list of hardware and software requirements for compiling and testing OrcaCF vi. 1.0.

Section 0 provides detailed installation instructions for ACE/TAO and Xerces, as well as System
Environment preparation.

Section 0 provides detailed installation instructions for OrcaCF vi. 1.0.

Relationship to Other Documents

This document is an appendix to the OrcaCF vl.1.0 Software User's Manual (SUM), and provides a
standard set of compilation, build and test procedures for the OrcaCF.

References
OrcaCFQRG vll_0.pdf: L-3 Communications GSI, June 2004.

Requirements

Hardware

The following is the system configuration of our test machine:

CPU - Intel(R) Pentium(R) 4 2.60GHz

RAM - 1024MB ECC DDR SDRAM

Display - NVIDIA Quadro 4 (generic)

Sound - SoundBlaster Audigy 2

Storage - 80GB IDE hard drive with ext3 filesystem

Network Interface - Intel 82540EM Gigabit Ethernet Controller

84

Software

The following software packages, along with their version numbers, were installed on our test machine:

Desktop (OS) -Red Hat Linux 9.0

"* Linux Kernel 2.4.20-8

"* KDE3.1-10

Net/File Browser - Konqueror 3.1-12

IDE - KDevelop 2.1.5

Compiler - gcc 3.2.2

make 3.79.1

XML Par ser - Apache Xerces C++ 2.5.0

CORBA ORB - ACE v5.4/ TAO vl.4

*NOTE: It is up to the developer to ensure they have a properly configured sound card and/or onboard

sound, in order to run the Sound Demo we include with the OrcaCF. We have successfully tested a
number of different sound cards and onboard sound. The Sound Demo was implemented using the free
version of the Open Sound System (OSS/Free), which was included in the Red Hat distributions 9.0 and
earlier. The Red Hat sponsored Fedora distributions have begun removing the OSS in favor of the
Advanced Linux Sound Architecture (ALSA). Fedora Core 1 uses OSS as the default sound interface.
Fedora Core 2 switched to ALSA. The Sound Demo DOES NOT work with ALSA.

Dependencies and Preparation

ACE/TAO and XERCES are dependencies for OrcaCF vl.1.0. The following sections include the
installation instructions for ACE/TAO and XERCES, as well as the System Environment preparation for
building the OrcaCF vl.1.0. The recommended installation paths are provided in the instructions and
should be followed, as the installation locations are key for the building and testing of the OrcaCF
projects. A couple of notes about the instructions in this document; we use <ENTER> as an indication for
the user to press the enter key on their keyboard, and we denote directory name differences by using < >
characters (eg. <username> refers to the user's Linux login name).

Install ACE/TAO

The following are the procedures for installing ACE/TAO on a Linux machine. If ACE/TAO is currently
installed on your machine, you may skip to section 0 below.

Download a stable release of ACE/TAO:

The version we currently use is ACE 5.4 with TAO 1.4. The file ACE-5.4+TAO-1.4.tar.gz is available
for download via the following link http: //deuce. doc. wustl. edu/old distribution/.
Save this file into a directory of your choosing.

85

Place a copy of the file in installation root directory:

Move or make a copy of the downloaded file and place it in the installation root directory of your
choosing. We currently have "/usr/ local /TAO" as our installation root directory.

Note: Administrative privileges may be required in order to perform the above copy
operation, depending on the configuration of the Linux OS. We chose to download
and install ACE/TAO while logged in as "root".

Decompress the Zipped File:

Extract the ACE/TAO package by right-clicking on the file and choosing Extract Here.... or.... you may
open a console (terminal) window and change to your chosen installation root directory, in our case
"/us r/_local/ TAO". The following console commands will decompress the package and create a new
subdirectory within the installation root directory labeled "ACE-wrappe rs".

gunzip ACE-5.4+TAO-1.4.tar.gz <ENTER>
tar -xvf ACE-5.4+TAO-1.4.tar <ENTER>

Note: Using the "Is" command will verify that the new subdirectory "ACE wrappers" was
created during the unzipping process.

Setup ACE/TAO Environment Variables:

The BASH shell is our shell of choice for all installation and testing procedures. The setting up of BASH
environment variables is done by modifying the .bashrc file.

Locate your .bashrc file using the Konqueror browser. This file is generally located in the user's
home directory, "/home/ <username>" where "<username>" indicates the user's login name. If
you do not see this file in your home directory you may need to enable the visibility of hidden files. To do
so, within the Konqueror browser, select Show Hidden Files from the View menu.

Open your .bashrc file using your text editor of choice.

Add the following lines at the end of your . bashrc file if they don't already exist:

export ACEROOT=/usr/local/TAO/ACEwrappers
export TAO ROOT=$ACEROOT/TAO
export PATH=$PATH:$TAO ROOT/TAO IDL
export LD LIBRARY PATH=$LD LIBRARY PATH:$ACE ROOT/ace

Note: The paths listed in the above statements represent the paths chosen for our installation.
Make the necessary changes needed for your installation path.

Below is a picture of a valid . bashrc file consisting of the ACE/TAO environment variables
representative of our installation:

86

File Edit Go Tools Settings Help

#. bashrc

#f User specific aliases and functions

Source global definitions
if [-f /etc/bashrc]; then

/etc/bashrc
fi

$ ACE/TAO ENVIRONMENT VARIABLES
export ACEROOT=/usr/l ocal/TAO/ACE-wrappers
export TAOROOT=$ACEROOT/TAO
export PATH=$PATH: $TAOROOT/TAOIDL
export LD_LIBRARYPATH=$LDLIBRARYPATH:$ACEROOT/ace

iNaS iLine: 13 Col: 20

Figure 10-1 bashrc File with ACE/TAO Environment Variables

Save the file.

Log out and then log back in for the above changes to take effect.

Setting Configuration Files

Next, two header files pertaining to the platform and compiler used must be created.

1. Using a console window, change to the "ACE ROOT/ace" directory. The "ACE ROOT"
variable was defined when setting up the ACE/TAO environment variables. The following
command quickly takes you to the desired directory.

cd $ACEROOT/ace <ENTER>

2. Next, create a symbolic link to the proper config file by typing the following command:

in -s config-linux.h config.h <ENTER>

3. Change to "ACE ROOT/include/makeinclude" directory.

cd $ACEROOT/include/makeinclude <ENTER>

4. Finally, create the last required link by typing the following command:

in -s platform_linux.GNU platform macros.GNU <ENTER>

Building the Sources

Now that the environment is set and the appropriate header files are defined, it's time to build the
ACE/TAO source files. We chose to build everything that came with the ACE/TAO download, including
the large number of examples. At each step listed below, it may take an extended period of time for the
sources to build, depending on the speed of the machine you are using. The entire build process took over

87

three hours to complete on our test machine. Experienced ACE/TAO users may go in and build only the

binaries they need.

1. Using a console window, change to the "ACE ROOT/ace" directory.

cd $ACEROOT/ace <ENTER>

2. Type the following command:

make <ENTER>

3. Once the ACE build is complete, change to the "ACEROOT/apps/gperf" directory.

cd $ACEROOT/apps/gperf <ENTER>

4. Type the following command:

make <ENTER>

5. Once the gperf build is complete, change to the "TAO ROOT" directory.

cd $TAOROOT <ENTER>

6. Type the following command:

make <ENTER>

*WARNING: We encountered compile/link errors during the build process of ACE v5.4/TAO

vl.4. The makefiles do not appear to build the projects in the proper order, therefore, we get
link errors because certain libraries are not built yet. There is also a subdirectory listed in one
of the makefiles that does not exist. Instructions for fixing these problems are listed below:

a. After you have started the last build step (step 6 above), you may encounter an error
searching for the Kokyu (-lKokyu) shared library. Change to the Kokyu directory and
run make:

cd $ACEROOT/Kokyu <ENTER>
make <ENTER>

b. After the Kokyu library finishes building, go back to the "TAO ROOT" directory and re-
run make:

cd $TAOROOT <ENTER>
make <ENTER>

c. Another error you may encounter is a missing ACEXML_Parser (-1ACEXMLParser)
shared library. Change to the ACEXML directory and run make:

cd $ACEROOT/ACEXML <ENTER>
make <ENTER>

d. After the ACEXMLParser library finishes building, go back to the "TAO ROOT"
directory and re-run make:

88

cd $TAOROOT <ENTER>
make <ENTER>

e. The last error we came across was a directory listing in one of the makefiles that does not
exist. The Makefile is located in TAO ROOT. The error is shown in the Makefile below:

Local macros

INFO = README \
VERSION

DIRS = tao \

TAO IDL \
tests \
orbsvcs \
examples \
performance-tests \
utils \
docs/tutorials/Quoter \
CIAO

The directory C I AO shown above does not exist and needs to be deleted from the
$TAOROOT/Makefile. Using your preferred editor delete the CIAO directory listing
from the Makefile and save it. (Don't forget to delete the "\" mark from the Quote r
directory listed above C IAO)

f After fixing and saving the Makefile, go back to the "TAO ROOT" directory and re-run
make:

cd $TAOROOT <ENTER>
make <ENTER>

If you encounter any other compile/build errors during ACE/TAO installation, please refer to the
ACE/TAO website for assistance (http://www.cs.wustl.edu/-schmidt/TAO.html). For other users wishing
to develop CORBA applications (eg. OrcaCF/SCA) using ACE/TAO, they must setup their respective
ACE/TAO environment variables, as described in Section 0.

Install Xerces
The following are the procedures for installing Xerces C++ on a Linux machine. If Xerces is currently
installed on your machine, you may skip to Section 0.

89

Download a Stable Release of Xerces:
The version we currently use is Xerces C++ 2.5.0. The file xerces-c-current . tar. gz is
available for download via the following link: http://xml.apache.orI/xerces-c/. Save this file into a
directory of your choosing.

Place a copy of the file in installation root directory:

Move or make a copy of the downloaded file and place it in the installation root directory of your
choosing. We placed the downloaded file in "/us r / local" (installation root) with the intent of having
our final Xerces installation directory be "/usr/local/xerces-c-src 2 5 0". The "xerces-
c-s sr_2_5_0" subdirectory is created during the unzipping process that follows.

Note: Administrative privileges may be required in order to perform the above copy operation,
depending on the configuration of the Linux OS. We chose to download and install Xerces
while logged in as root.

Decompress the Zipped file:
Extract the xerces-c-current. tar. gz package by right-clicking on the file and choosing Extract
Here..., or.... you may open a console (terminal) window and change to your chosen installation root
directory, in our case "/usr/local". The following console commands will decompress the package
and create a new subdirectory within the installation root directory labeled "xe rces -c-s rc 2 5 0".
Proceed with the following commands:

gunzip xerces-c-current .tar.gz <ENTER>
tar -xvf xerces-c-current.tar <ENTER>

Note: Using the "Is" command will verify that the new subdirectory "xerces-c-src 2 5 0" was
created during the unzipping process.

Setup Xerces Environment Variables:
The BASH shell is our shell of choice for all installation and testing procedures. The setting up of BASH
environment variables is done by modifying the .bashrc file.

Locate your .bashrc file using the Konqueror browser. This file is generally located in the user's
home directory, "/home/ <username>". If you do not see this file in your home directory you may
need to enable the visibility of hidden files. To do so, within the Konqueror browser, select Show Hidden
Files from the View menu.

Open your .bashrc file using your text editor of choice.

Add the following lines at the end of your . bashrc file if they don't already exist:

export XERCESCROOT=/usr/local/xerces-c-src 2 5 0
export LDLIBRARYPATH=$LDLIBRARYPATH:$XERCESCROOT/lib

Note: The paths listed in the above statements represent the paths chosen for our installation.
Make the necessary changes needed for your installation path.

Below is a picture of a valid . bashrc file consisting of the ACE/TAO and Xerces environment
variables representative of our installation:

90

File Edit Go Tools Settings Help

ACE/TAO PATHs
export ACEROOT=/usr/]ocal/TAO/ACE-wrappers
export TAOROOT=$ACEROOT/TAO
export PATH=$PATH:$TAOROOT/TAOIDL
export LDLIBRARYPATH=$LDLIBRARYPATH :$ACEROOT/ace

XERCES XML Parser PATHs
export XERCESCROOT=/usr/local/xerces-c-src_2_5_0
export LDLIBRARYPATH=$LDLIBRARYPATH:$XERCESCROOT/lib

4 41

F3INS 1Line: 27 Col: 26

Figure 10-2 bashrc File with ACE/TAO and Xerces Environment Variables

Save the file.

Log out and then log back in for the above changes to take effect.

Building the Sources:
Now that the environment is set, it's time to build the Xerces source files.

The Xerces website has detailed and advanced build instructions for more advanced users. We will list
our simple build instructions below:

1. Using a console window, change to the "XERCESCROOT/src/xercesc" directory.

cd $XERCESCROOT/src/xercesc <ENTER>

2. Type the following command:

./runConfigure -plinux <ENTER>

3. Type the following command:

make <ENTER>

If you encounter any compile/build errors during Xerces installation, please refer to the Xerces website
(http://xml.apache.org/xerces-c/index.html).

OrcaCF installation

The following are the procedures for setting up a Linux machine for building the OrcaCF source code.

Place OrcaCF Package in installation root directory

The name of the file containing the source code is OrcaCF v1 1 0 source. tar. gz. Place a copy

of the file in the installation root directory of your choosing. When testing our material, we choose the

91

installation root directory to be our "HOME" directory, or explicitly "/home/<username>", with the
intent of having our final OrcaCF installation directory be "/home/ <username>/OrcaCF". The
"OrcaCF" subdirectory is created during the unzipping process that follows.

Decompress the Zipped File

Extract the OrcaCF v1 1 0 source. tar. gz package by right-clicking on the file and choosing
Extract Here.... or ..., you may open a console (terminal) window and change to your chosen installation
root directory, in our case "/home/ <username>". The following console commands decompress the
package and create a new subdirectory within the installation root directory labeled "OrcaCF". Proceed
with the following commands:

gunzip OrcaCF vi 1 0 source.tar.gz <ENTER>

tar -xvf OrcaCF vl1_0 source.tar <ENTER>

Note: Using the "Is" command will verify that the new subdirectory "OrcaCF" was created
during the unzipping process.

Environment Variables
The BASH shell is our shell of choice for all installation and testing procedures. The setting up of BASH
environment variables is done by modifying the .bashrc file.

Locate your .bashrc file using the Konqueror browser. This file is generally located in the user's
home directory, "/home/ <username>" where "<us ername>" indicates the user's login name. If
you do not see this file in your home directory you may need to enable the visibility of hidden files. To do
so, within the Konqueror browser, select Show Hidden Files from the View menu.

Open your .bashrc file using your text editor of choice.

Add the following lines at the end of your . bashrc file if they don't already exist:

export ORCACF ROOT=$HOME/OrcaCF

export PATH=$PATH:$ORCACF ROOT/bin
export LD LIBRARY PATH=$LD LIBRARYPATH:$ORCACFROOT/lib

export NS OPTIONS="-ORBDottedDecimalAddresses 1 -ORBEndpoint \
iiop://<hostname>:<port> -m 0 -d"
export CF OPTIONS="-ORBDottedDecimalAddresses 1 -ORBInitRef \
NameService=corbaloc: :<hostname>: <port>/NameService"

Note: The paths listed in the above statements represent the paths chosen for our installation.
Make the necessary changes needed for your installation path.

The NS OPTIONS and CF OPTIONS environment variables contain parameters that are unique
and must be set by the user. The <hostname> is the hostname of the machine that OrcaCF is
executed on and the <port> is a unique port number that will be used by OrcaCF executables.
The NS OPTIONS contains the ORBEndpoint parameter that tells the ORB to listen for
requests on the interface specified by the endpoint. Endpoints are specified using a URL style
format. An example of an HOP endpoint is:

iiop://localhost:9 999

The standard installation of Linux distributions installs a network LOOPBACK interface called
"localhost" with an IP address of 127.0.0.1. Using "localhost" is recommended for anyone not

92

familiar with networking. If you have altered the "localhost" interface in any way, the
application may not work properly. The CF OPTIONS environment variable contains the
ORBInitRef parameter, which is the ORB initial reference argument. This argument allows
specification of an arbitrary object reference for an initial service which, in this case, is the
Naming Service. The format is:

-ORBInitRef [Objectl D]=[ObjectU RL]

Using "localhost" (recommended), the line would look like this:

-ORBInitRef NameService=corbaloc: :localhost:9999/NameService

The "localhost" and "port" must match for proper CORBA communication.

Below is a picture of a valid . bashrc file consisting of the ACE/TAO, Xerces, and OrcaCF
environment variables representative of our installation. For beginners, it is recommended that
you use the PATHs shown below:

93

v..M

File Edit Go Tools Settings Help

.bashrc A

User specific aliases and functions

Source global definitions

if [-f /etc/bashrc]; then

/etc/bashrc

fi

ACE/TAO PATHs

export ACE ROOT=/usr/local/TAO/ACE wrappers

export TAO ROOT=$ACE ROOT/TAO

export PATH=$PATH:$TAO ROOT/TAO IDL

export LDLIBRARYPATH=$LDLIBRARYPATH:$ACEROOT/ace

XERCES XML Parser PATHs

export XERCESCROOT=/usr/local/xerces-c-src 2 5 0

export LDLIBRARYPATH=$LDLIBRARYPATH:$XERCESCROOT/lib

OrcaCF vl.1.O PATHs

export ORCACF ROOT=$HOME/OrcaCF

export PATH=$PATH:$ORCACF ROOT/bin

export LD LIBRARY PATH=$LD LIBRARY PATH:$ORCACFROOT/lib

export NS OPTIONS=r-ORBDottedDecinalAddresses 1 -ORBEndpoint N
iiop://localhost:9999 -n 0 -d"

export CF OPTIONS=r-ORBDottedDecinalAddresses 1 -ORBInitRef N
NaaeService=corbaloc: :localhost:9999/NaneServicerr

i, I

FINS ILine: 27 Col: 1

Figure 10-3 Final bashrc File

Save the file.

Log out and then log back in for the above changes to take effect.

Building the Sources:
Now that the environment is set, it's time to build the OrcaCF source files.

1. Go to the ORCACF ROOT/src directory and make sure the OrcaCF install script has execute
permissions.

Type the following commands:

94

cd $ORCACF ROOT/src <ENTER>

11 <ENTER>

The install script should now be listed with its permissions. Execute permissions should be listed (-

x) in at least one spot to the far left. It should look similar to the following:

-rwxr-xr-x 1 <username> users 1756 <date><time> OrcaCF install

If you do not have execute permissions, or do not understand how to tell, do a web search on the
chmod command in Linux, or simply type:

man chmod <ENTER>

in the console window. This will show you how to change permissions on a file. If the permissions
look ok, move on to the next step.

2. Runthe OrcaCF install script.

Type the following command:

./OrcaCF install <ENTER>

This will build all the required components of the OrcaCF. Once the build process is complete the
OrcaCF is installed and ready to be run. Refer to the OrcaCFQRG vl1_O.doc (Quick Reference
Guide) for instructions on how to run the OrcaCF Sound Demo.

Summary

This document is a guide for building the OrcaCF shared libraries and executables, and for setting up the
OrcaCF development structure. If you have any questions, comments, or feedback, please email to
OrcaCF.gsi@L-3com.com.

95

Appendix D. Software Design

96

Scope
This document is the software design description for the Open Radio Communication
Architecture Core Framework (OrcaCF) v 1. 1.0.

Overview
This Appendix to the Software Users Manual (SUM) provides the "as-built" design of the OrcaCF vi. 1.0.
This document includes the design diagrams developed in the Unified Modeling Language (UML). The
tool used to develop the UMIL diagrams is Rational Rose, Rose Enterprise Edition, Release Version 2002-
05-20. The remaining sections of this appendix are organized in the following manner.
Section 0 is an overview of the OrcaCF development, providing information about the operating
environment around which the OrcaCF has been designed.
Section 0 provides an overview of the OrcaCF project, defines the OrcaCF packages, and shows the
relationship between the OrcaCF packages.

OrcaCF Operating Environment
The OrcaCF has been designed around the Open Source model, utilizing open source commercial off the
shelf components. Figure 10-4 below shows the notional relationship between the SCA Operating
Environment components selected or built for the OrcaCF.

Applications' Resources,
CF Base Application Interf aces

Core Framework:

F ramework Control&
Framework Services Interfaces

S~CORBA ORB

STAO non-CORBA
components

or
Adaptive Communication Environment (ACE) device drivers

(PO SIX)

OS LI NUX

OrcaCF Developement

Reused Open Source COTS

Figure 10-4: OrcaCF Design of SCA Operating Environment

Operating System
The OrcaCF has been designed and built on the Linux operating system. Linux is a POSIX 1 compliant
operating system, and it also satisfies the SCA AEP requirements.
The current version of the OrcaCF has been designed and built on Red Hat 9.0 utilizing the Linux Kernel
version 2.4.20-8.

97

Middleware (CORBA)
The OrcaCF utilizes The ACE Orb (TAO) to satisfy the middleware and CORBA requirements of the
SCA. TAO is built on top of the Adaptive Communication Environment (ACE).
ACE provides a set of C++ wrappers and framework components that perform common communication
software tasks across multiple OS platforms. This enables TAO to be used on multiple OSs (e.g.
Windows, POSIX, VxWorks, etc.). The OrcaCF also reuses ACE within its packages to take advantage
of the portability. On a POSIX OS, ACE uses the POSIX. 1 calls that are defined in the SCA AEP.
Both ACE and TAO are freely available open-source products, which fit the overall design of the
OrcaCF. The current version of the OrcaCF has been built around ACE version 5.4 and TAO version 1.4.

Naming Service
TAO's CosNaming ORB service satisfies the requirements set forth within the SCA. This component is
reused by the OrcaCF to meet the SCA requirements for a Naming Service. TAO's CosNaming
component is a shared library. TAO also provides an executable called NamingService used for
launching the CosNaming ORB service. This executable is also reused by the OrcaCF.

Event Service
TAO's CosEvent ORB service satisfies the requirements set forth within the SCA. This component is
reused by the OrcaCF to meet the SCA requirements for an Event Service. TAO's CosEvent component
is a shared library.
The SCA also provides a set of standard event interfaces defined in IDL. This IDL has been compiled by
the TAO IDL compiler into C++ source code and is located within the OrcaCF SCA Interface package.
The OrcaCF SCA Interface package is described in greater detail below.
The combination of TAO's CosEvent component and the OrcaCF SCA Interface component are utilized
to satisfy the Event Service requirements specified within the SCA.

Log Service
The SCA defines a Log Service to be provided with the Operating Environment. While this Log Service
is optional, the OrcaCF provides a C++ Log Service component designed and built around TAO, ACE
and Linux.
The OrcaCF Log Service is an executable component implemented within the OrcaCF Log Service
package. The OrcaCF Log Service package is described in greater detail below.
The SCA also provides a standard set of APIs for a Log Service defined in IDL. This IDL has been
compiled by the TAO IDL compiler into C++ source code and is located within the OrcaCF SCA
Interface package. The OrcaCF SCA Interface package is described in greater detail below.
The combination of the OrcaCF Log Service component and the OrcaCF SCA Interface component are
utilized to satisfy the Log Service requirements specified within the SCA.

Core Framework
The SCA defines the Core Framework's interfaces and behavior. These interfaces are utilized for
implementing the components of an SCA compliant software radio. The SCA provides the IDL for these
defined interfaces. The relationships between the SCA-defined class interfaces are shown in Figure 10-5
below.

98

ImqpLffhtadu Tejkobjfti

•iManur

Figure 10-5: Core Framework Class Relationships defined in JDL

The Core Framework JDL has been compiled by the TAO JDL compiler into C++ source code

and is located within the OrcaCF SCA Interface package. The OrcaCF SCA Interface package is
described in greater detail below.
The implementations of the SCA components defined by the SCA have been implemented within the
OrcaCF Project and are described in the sections that follow

OrcaOF Project
The OrcaCF project is designed in a modular fashion consisting of several components or subprojects.
These components consist of executables, shared libraries, and external third-party utilities. Each of the
components is described in greater detail in the sections that follow.
The design of the OrcaCF project has been diagramed using Rational Rose. The Rational Rose project for
the OrcaCF has been set up so that each component within the model corresponds to a different
subproject or third-party component. Figure 10-6 shows the component view for the Rational Rose
project.

99

OrcaCF
i.. U Use Case View
i.. Li Logical View

o.. Component View
E-l ACE/TAO

.. <<Shared Library>> ACE

.. <<Executable>> NamingService

.. <<Shared Library>> TAO

... <<Shared Library>> TAO CosEvent

... <<Shared Library>> TAO CosNaming

... <<Shared Library>> TAO IORTable

... <<Shared Library>> TAO PortableServer
... <<Shared Library>> TAO Svc Utils

EI OrcaCF
Ei• Sound Demo Waveform Application

S<<Executable>> SoundDemcAssemblyController
:j:•ExecutablFeý:SoundDL-iE:emoýDFResourceir-

<. <«Executable>> ApplicationHMI
< «Executable>> DomainBooter

KI. <<Executable>> EventViewer
EI. <<Executable>> LogService
EI <<Executable>> LogViewer

< <Executable>> NodeBooter
S<<Shared Library>> OR4__AudioDevice
S<<Shared Library>> ORA_FileService

.. < Shared Library> OR>__A_GPPDevice
S<<Shared Library>> ORA_HWlnterface
S<<Shared Library>> ORFA LogPort
S<<Shared Library>> ORFA_SAlnterface
S<<Shared Library>> ORFA_XMLHandler

*-E-1. XERCES
E.. <<Shared Library>> xerces-c

-. Main
- Deployment View

.. Model Properties

Figure 10-6 OrcaCF Rational Rose Project

The OrcaCF package shown in figure 3-1 shows the components that have been developed for the
OrcaCF project. This figure also indicates the stereotype of each component, which matches the
<softpkg> <implementation> <code> <type> attribute defined in Appendix D of the SCA. The

components shown in the ACE/TAO and XERCES packages are third-party components used by the

OrcaCF.

Domain Booter

The Domain Booter is an executable component implementing the Core Framework interfaces for the
Domain Manager, Application Factory and Application servant objects. The class diagrams for these

servant objects can be seen in Figure 10-7 and Figure 10-8.

100

CIF HandlerBase ParseL~il
(from DomainiManagement) (from Pardrng&Utillasses

<<inherits>>

<inhrits>> >inri
<<inherits>>>

<inheritsinherits>

Parser Component

Lfm PPoigUhtý uoniM n igrstaIL op eri Po tyion()drg&UC

(fomPasig&ti~lsss)(fomm POA CF) (from Pardrng&UtilCI-as(msCF

(tor Logpo- «ir<<Interlace>>~e~ce

ApplicAiioncation<<user--g
(fommCF) < in herits> . ses>>t/ 7/ <<uIses>>

/ ~ <<ujses>> L •, <Itrae>:<ss> • omDomain Management)

<<use>> /• • • •Domra ni~anager

/ •-- •egi sterDe~ceO <<u~ses>>
cc <<instantiae>>

......
u 1 :unregisterCDevsceManagef r Domo n Maernasgm

101unregisterDece0
1-installApplicabo n0

Log~~ort 0. unirstal plcain
(fom Log Po <se> registerService0

S• <uses> r <<Interface>> *unregist erSe~ce0

SApplicationFactory *iregi sterWit h Event Channel 0
(from CF) *un regist erFrornEvert Chart el0)

<<instantiae>i/•

\\ / <<Interface>>

DexiceManager
(from CF)

Figure 10-7: Class Diagram for Domain Manager

101

t ParseUtil [XM LHandler

(from Parsing&Util~lasses) (frm DomainManagement)

Cornponents « <uses»>
(from Parsing &Util Classes)t

\•'•" ~<<inherits»>.•

« <Interface»>
| Applic at io n Fac to ry

7 I (from OF)
ApplicationFactory « <inherits»> . .. _

frmPOA OF) o1 n~ame. string.
(from| •iaentifer: string

osofwarProfile :string

S*create0)
//• /o0..*/

•/ | <<«Interface».
«<instantiate»> DomainManager /

,• • -- (from OF)

LogPort «_ <uses>> «uses

(from Log Port) • •/

Application TAO RefCountServantB ase

Figure 10-8: Class Diagram for Application Factory & Application

The Domain Booter also contains a Domain Manager Consumer object, which implements the
CosEventConmm PushConsumer interface. This object is a Core Framework provides port utilized by the
other Domain Booter objects for receiving events from the Event Service.

The Domain Booter component also has internal and external dependencies to ACE, TAO, Naming
Service, Event Service, SCA Interface, File Service, XML Handler and Log Port.

File Service

The File Service is a shared library component implementing the Core Framework interfaces for the File
Manager, File System and File servant objects. The File Service component also contains a utility class
for converting POSIX error numbers to SCA error numbers. The class diagrams for these servant objects
can be seen in Figure 10-9.

102

ErrorNumberUtil
(from Parsing&UfilClasses)

4 ErrorNumberUtil() File
*-ErrorNumberUtil() (from POA CF)

O
4

getCF-ermoO

<<inherits" «inherits>>

<<Interface>>
File

(from CF)

,fileName : string
/filePointer : unsigned long

ErrorNumberUtil
w ereadO (from Parsing&UfilClasI.s)

*#write()
*sizeOf(4

ErrorNumberUtil() FileSystem
*4close() **ErrorNumberUtil() (from POA CE)

ErrorNumberUtil 4
setFilePointerO) *getCFermo0m

(from Parsing&UfilClasCsI) if,

4 ErrorNumberUtil() FileManager
4

ErrorNumberUtil() (from POA C)inherits>>
#getCFermoO «inherets»

<<uses>> inherits

«<inherits»> //
« <<inherits>> <<Interface>>

FileSystem
(from CF)

<<Interface>>
FileManager 4

remove0
(from CF) <<uses>>

4copyO
*#exists()

*mount0 4list0
*unmount0 *create0
'kgetMountsO 4

open0
4

mkdir)
rmidirO

*queryO

Figure 10-9: Class Diagram for File Service

103

The File Service component has been designed as a shared library so that it can be dynamically loaded
and shared between the other components of the OrcaCF.
The File Service component also has internal and external dependencies to ACE, TAO, and SCA
Interface.

SCA Interface
The SCA Interface is a shared library component providing the client stubs and server skeletons for the
interfaces defined in Appendix C of the SCA. These interfaces were defined in IDL and contained in the
files CF.idl, PortType.idl, Log.idl and StandardEvent.idl. All of the C++ code contained within this
component has been auto-generated by running these IDL files through the TAO IDL compiler. Figure
10-10, Figure 10-11, Figure 10-12, and Figure 10-13 show the interfaces contained within each IDL file.

Application LoadalleDev

ApplicatioFl

De'ce Te~stableObj

Of ect

Dei ,~aa O 0 0

ger AggregateC DomainMan File FileManager FieSystem LifeCycle Port Pro•etySet Resoure eourceFa PortSupplier

eAce ager

Figure 10-10: Interfaces Defined In CF.idl

R PortTypes

Figure 10-11: PortTypes.idl

LogSerAce

Log

Figure 10-12: Interface Defined In Log.idl

104

«CORBAStmucr'
StateChangeEwenType

OprcxtuceslD: strihn
ourcelD : string

OstaeC~hageGategow: StateChangeCategoryType
St*eGtangeFfom: StateChangeType
Ott~ethangeTo: StateChangeType

cCGORBAEnum» /
State nge-ypT CcCCJR< AEJujP>

StateChangeCategryType
NLOCKED 9ADMINISTRA11VESTATEEVENT

QIJ H _LwNNLOCKE D $PERA1N-OAL_STA-E_EVENT
O BLfNGED pUSAGESTATE-EVENT
SpEABLED

OIDLE
42AGTUE

S13USY

-<CORBAStmct» <CORBAStruct>>
DominManagementObjectAddedEwenType [DoaainManagementObjtRenmovedEventType

epprDdue[D: strng GpmduceiD -: string
ouceF•D string ourcelD: string

:OtrceNarne sting Q sueName-: stning
<otrcefOR• Obj s ourceCategay SactiSceCate-gyTy
6os ceCategory - SourceCategcnyType

" CORBAEnunm>
SourceCatego.Type

OOEVICE MANAGER
S)EVICE
0',PPLICATION_FACTORY

P PLICATION
4ýGERVICE

Figure 10-13: Interfaces Defined In StandardEvent.idl

The SCA Interface component has been designed as a shared library so that it can be dynamically loaded
and shared between the other components of the OrcaCF. Almost all components of the OrcaCF are
dependent on this shared library.
The SCA Interface has external dependencies to ACE and TAO.

Log Port
The Log Port is a shared library component implementing the Core Framework interface for the Port
servant object. This object is a Core Framework uses port utilized by log producers within the OrcaCF to
connect to and communicate with an SCA Log Service. The class diagram for this servant object can be
seen in Figure 10-14.

105

Port Log
(from POACF) (from POALogService)

<<inherits>> <<inherits>»

«<conflnect>>

LogPort LogService-i
(from LogPort) (from LogService)

<<uses>>

LogProducer
(from LogProducer)

Figure 10-14 Log Port Class Diagram

This component has been designed as a shared library so that it can be dynamically loaded and utilized by
all OrcaCF log producer objects.
The Log Port has internal and external dependencies to ACE, TAO and SCA Interface.

106

XML HANDLER

The XML Handler is a shared library component providing a common interface for accessing
data contained within the XML defined by the SCA Domain Profile. An example of how the
XML Handler is used by an OracCF component can be seen in Figure 10-15.

:v ULHandler Parser
CF ApplicationFactory i SADSoftwareassembly

new

addFile(*.sad.xml)
> new(*.sad.xml)

parse

DOM::document Each XML object calls
addFile on the XMLHandler for
each localfile element. This
occurs until all localfile

new(DO ::document) references have been added.

add Fi e(localfile)
destroy -

dsr
•If the addFile is called with a

Domain Profile file, the
XMLHandler will create a new
parser and XM L object. All
other files are only verified for

getAs sem bly Controller(sad.xm) existence.

instantiationid inst ntiationid The XMLHandler will
navgate the XM L objects to
obtain the necessary
information and return it to
the calling Core Framework
object.

Figure 10-15: Example of XML Handler

The XML Handler component has been designed with a layered approach. The first layer is the
XML business objects, which are auto-generated from the DTDs provided by the SCA Domain
Profile. These objects store and provide access to the data extracted from the XML files. There
are a set of classes associated with each Domain Profile DTD and are explained in greater detail
in the sections that follow.
The Parser layer does all of the parsing and validation of the XML files. These files are
validated against the DTDs provided with the OrcaCF. The Parser utilizes the XERCES parser
to parse and validate the files. The XML files are parsed into a DOM Document. Once a file has
been parsed and validated the XML Handler object uses the DOM Document to create the XML
business objects.
All interaction between the Core Framework objects and the XML takes place through the XML
Handler object. The XML Handler object uses the Parser object to parse and validate XML, and
uses the XML business objects to store and navigate through the XML data. The XML Handler
is responsible for extracting and formatting XML data for use by the Core Framework objects.

107

The Core Framework objects that use the XML Handler consist of the Domain Manager,
Application Factory, Application and Device Manager. The class diagram for the XML Handler
object can be seen in Figure 10-16.

XM LHandler
(from DomainManagement)

4 XM LH and lero
*<<virtual>> -XMLHandler(
*addFileo
t delFileO
t dum pList(
t getCand date mplementations(0
4 getTree0
*getS ad Id0
t getS ad N am e(0
t getlnstantiationsO
t getAllocationPropertiesO
4 getUsesDevices(0
4 getCom ponentFiles 0
4 getExecutable0
t getConfigureP roperties 0
t getAssemblyController0
4 getConnections0
t getExternalPorts 0

tlocatelnstantiationFrom IdO
thandleEntry Pointo
&handleOptionsVar0
&handleExecParamsVaro
+handleFactory P aramsVaro
thandleN am ingS e rvic eName0
&handleFactory dO
thandleCom ponentInstantiation RefO

h andleDeviceThatLoadedThisCom ponentRef0
*handleDeviceUsedByThisCom ponentRef0
&handleFindby0
&setLoadType(0
thandleCom ponentlm plem entationO
thandleUsesDevice0
tsetSim pleValue0
tsetS im pieS equenceValues 0
*handleComponentPlacementO
&locateSpdFrom RefldO
&getSpdNameFrom DevIm pIId0
&getlm plem entationFrom DevIm pIId0
tioc ate RefId In P roperties 0
tioc ate RefId In P roperty Files 0
&checklmpl0
*IocateParam s In roperties0
tloc ate P aram sO
tlocateValuelnEnum erationsO
UgetS im pleValue0

Figure 10-16: XML Handler Class

108

DCD XML Business Objects
The DCD XML business objects are derived from the SCA Device Configuration Descriptor (DCD)
DTD. These classes are used to store and provide access to XML data within a DCD XML file. Each
class represents a corresponding element definition inside the DCD DTD.

DCDComponentfiles DCDonnecti ons DCDIartitioning
(from DomainManaerent) (mainMmainManagernent) (from DomainManagement)

«e<<uses»> \ <<uses»>/

DCDFilesystemnames <uses> DODDemoeconfiguration DCDDescripton
(from DomainManagerent) (from DomainManagement) (from DomainManagement)

« <uses»> <<uses»
DODDomainmanager DCDDejcemanagersoftpkg «uses»>[DODLocaIfle

(from DornainManagement) (from DornainManagement) (from DomainManagement)

<<uses»>o, <<uses»>
<<uses»>,

DCDComponentfileref DCDeicepkgfile DCDComponentfile
(from DomainManagement) (from DomainManagement) (from DomainManagemrent)

DCDNamingser\ce <<uses»> V,
(from DomainManagement) __ -- <<uses»> « <<useses»

<<uses»>// A DCDaomponent placement < Duses DODDeployonde)ce
DCDUsesidentifier (from DomainManagement) (from DomainManagement)

DCDFi ndLy (from DomainManagement)

(rom DomainManagement)
«euses»

« <<uses»
DCD-Isesport DCDCompositepartotlece

(from DomainManagement) (from DomainManagement)

DCDDanainti ndr «<uses»~,
(from DomainManagement) « es»> / <<uses»> DCDProdesidentiter

(from DomainManagement)DCDo°nnec"inerace
«<uses»,, C~netrefc DCDDe~cethatloa~dethiscomponentret 1

(fmrn DomainManagement) (from DomainManagement)

S<<«uses»
<<uses> «uses»

<<uses»> DCDProdesport

DCDComponentsupportedinterface I (fromr ainManagement)

(from DomainManagement) <<uses»> <«<uses»> «<uses»>
-<uses>> DCDDevceusedbythiscomponentref

<<uses>> (from DomainManagement)
V E&

DCDSLpportedidntiler DCDComponentinstantiationref _ _

(from DomainManagement) trom DormainManagement) <<uses»>

DCDValues DCDUsagename DCDComponentproperties
(from Domain Management) (from DomainManagement) L trom DormainManagement)

<<uses»> <<us «>>, <<uses»o

DCDSimplesequenceref DCDComponentinstantiation
(from DomainManagement) (from DomainManagement)

DCDSimpereft DCDStructvalue DCDFilesystemname DCDStructsequenceref
(from DmainManagement) (from DomainManagement) (from DomainManagement) (from DomainManagement)

DCDStructref DCDFiIe DODValue

(from DomainManagement) (from DomainManagement) (from DomainManagement)

Figure 10-17: Class Diagram of DCD XML Business Objects

DMD XML Business Objects
The DMD XML business objects are derived from the SCA Domain Manager Configuration
Descriptor (DMD) DTD. These classes are used to store and provide access to XML data with a

109

DMD XML file. Each class represents a corresponding element definition inside the DMD
DTD.

DMDDescription DMDFile
(from DomainManagement) (from DomainManagement)

<<uses>>

DM DDomai nm anagerconfiguration
(from DomainManagement)

<<uses>> «<uses>>

DMDServices DMDDomainmanagersoftpkg
(from DomainManagement) (from DomainManagement)

« <<uses>>

DMDLocalfile
(from DomainManagement)

DMDDomainfinder
(from DomainManagement)

<<uses>>

DMDUsesidentifier DMDFindby
(from DomainManagement) (from DomainManagement)

<<uses>> <<uses> <uses>>

DM DSerice DMDNamingservice
(from DomainManagement) (from DomainManagement)

Figure 10-18: Class Diagram of DMD XML Business Objects

110

DPD XML BUSINESS OBJECTS

The DPD XML business objects are derived from the SCA Device Package Descriptor (DPD)
DTD. These classes are used to store and provide access to XML data with a DPD XML file.
Each class represents a corresponding element definition inside the DPD DTD.

DPDDiced~s • <<Uses>> t DPDm ceregistrioMn <<Uses>> DPPropertylile
(from DormanManagerrent) (from DomainManaeent) (from Domai nManagerrent)

<<Llses>>j • •/

DPDDescripti cn <<LSf > z

f rom Domain Manag errent) z <<L1SeS>>

z <<Lses> <uses

<<Lses>> t Z <<Uses

DP //d DurP mDMilduicb~ce ITFLocafile
SPrnManagerrint) (from Domai nManagement) (from Dorma nManagement)DPDD8Vcepkg fo on9n~ngmn) \

f rom Do main Managerrent) A

DPD[MdenLnrT-er <<uses>>
(from Doma nManagerrent) \

<<uses»>\\\<LS>

DPD-fitle CFDNa-ne
(rom DomainManagerrent) (from D rmn fnManagerient) (from D orn nlManiage enrt)

DPDALthor mRe
(from DxmdnManagerrnt) O(from DomainManagerrent)

(from annnManagerrgent)

DPDOCrMny DMUPDpqW
(from DomainManagerent) (from Dma nManagerent)

Figure 10-19: Class Diagram of DPD XML Business Objects

111

PRF XML Business Objects

The PRF XML business objects are derived from the SCA Properties (PRF) DTD. These classes
are used to store and provide access to XML data with a PRF XML file. Each class represents a
corresponding element definition inside the PRF DTD.

PRFAction <uses> PRFSimplesequence <<ues PRFVaIues
(rom DomainManagement) (from DomainManagement) (from DomainManagement)

S <<uses>> <«uses>-

<<uses>> PRFUnits PRFProperties
(from DomainManagement) PRFRange, rom DomainManagement)

•<uses>> ,J (from DomainManag ment)
u « <<us es>>

PRFSiple <<uses>> PRFDescription
(from DomainManagement) (from DomainManagement)

<uses>>

<<uses>> PRFValue <<usesus
(from DomainManagement) <<uses> 7 ses>>

F PRFStructsequence PRFStruct
F PRFEnumerations (from DomainManagement) (from DomainManagement)

(from DomainManagement) PRFTest
(from DomainManagement) <<uses «<<uses>>

PRFConfigurationkind
<< <<s>uses (from DomainManagement)

PRFResuhtrue PRFInputhalue
(from DomainManagement) (fom DomainManageme nt) PRFSimpleref

(from DomainManagement)

PRFFile
(from DomainManagement)

PRFStructvalue
(from DomainManagement)

PRFKind PRFEnumeration

from DomainManagement) (from DomainManagement)

Figure 10-20: Class Diagram of PRF XML Business Objects

112

Profile XML Business Objects
The Profile XML business objects are derived from the SCA Profile DTD. These classes are
used to store and provide access to XML data with a Profile XML file. Each class represents a
corresponding element definition inside the Profile DTD.

PROFile PROProfile
(from DomainManagement) (from DomainManagement)

4 PROFileO 4 PROProfileO
4 parseFileO *<<vArtual>> PROProfileO

«<<const>> getFilenameO
«<<const>> getTypeO

4 getLinkedTreeO

Figure 10-21: Class Diagram of Profile XML Business Objects

113

SAD XML BUSINESS OBJECTS

The SAD XML business objects are derived from the SCA Software Assembly Descriptor
(SAD) DTD. These classes are used to store and provide access to XML data with a SAD XML
file. Each class represents a corresponding element definition inside the SAD DTD.

<<dBE>> ^. .. o ,< >1 saub <<B•>>• su•p

--~d~Met fwbfi~~nr) -

<L.rd< <4 W

SS~bpm tr~athas S0•Is~b-td1

<ý>4~> <4> > irr r

< SdBn&> rt T El-t l

ý-n~ndrErqg-ert

Fiue1-2 ls iga fSbkAD XsMLBusies Objects ~i

SW80114f

V Z-1 Scdk~am SrQlle

Figureir 1022 Class4 Diagra of SA XML Busnes bjct

ý-nar& ý)ý-n~rdr~egf114t

SCD XML BUSINESS OBJECTS

The SCD XML business objects are derived from the SCA Software Component Descriptor
(SCD) DTD. These classes are used to store and provide access to XML data with a SCD XML
file. Each class represents a corresponding element definition inside the SCD DTD.

SCDPorts
(from DomainManagement)

>/\ SCDI nterfaces
«uses» (from Domain Management)

SCDComponentfeatures 1A
(from DomainManagement) SCDLocalfile

(from DomainManagement)

SCDComponentrepid «ues
(from DomainManagement) <<uses>> »

SCDPropertyfile

S\,<uses>> (from DomainManagement)S.... I •<<uses»>\
SCDComponenttype

0from Domain Manage me nt) <<uses>,

SCDCorbaversion SCDSoftwarecomponent
(from DomainManagement) <uses» (from DomainManagement) SCDInheritsinterface

(from Domain Management)

SCDUses SCDProvides SCDInterface
(from DomainManagement) (from DomainManagement) (from DomainManagement)

SODSupportsinterface SODFile SCDPorttype
(from DomainManagement) (from DomainManagement) (from DomainManagement)

Figure 10-23: Class Diagram of SCD XML Business Objects

115

SPD XML BUSINESS OBJECTS

The SPD XML business objects are derived from the SCA Software Package Descriptor (SPD)
DTD. These classes are used to store and provide access to XML data with a SPD XML file.
Each class represents a corresponding element definition inside the SPD DTD.

SPDSoftpkg -.....uses- SPDPropertyflle
0ro DomanManageme.. 1 (fro Doma nManagemenr

SPDLocalfile -uses-

-uses» «-uses- 0- from D/omn....e. • f ro•mi SPDPriority

SPDTitle SPDDescnptor <uses»

(frm om n~naemnr (fomDoa ~angeen;-uses» «_e-/ uses»

«uses>po tI oPde SPDCornpiler
uses (r Doma nManagemen (from DomainManageme") (from DomainManagemen)

SPDDependency <uses > SPDSoftpkgref /
(1fo Doa nD Manage nre -rom DomainManagemne)

«uses» «uses»

SP~rpetyf frmSPDlrnpref SPDProgranringlrguage
(fom Doananaemeni; (1 Doma nManagemni; 0-o Doa 1)ngeer

SPDDecription «uses» SPDlrnplernentation «uses» SPDRuntirne
from Domain Management) (from DomainManagemenr) (from Doma nManagemenn)

-<uses>>

SsPDHuMrlrguage
SPDOs SPDNarne (from Doma Mangemnl;

(from DomainManageme-) 0-m DomanMan agemenI)

SPDProcessor S PDUsesdevce SPDWebpage «us SPDAuthor «uses» SPDCornpany
0-m Doma nManageme) (from DomainManagemen) 0-rom DomainManagemenl) (from DomainManagemenr) (from DomainManagemenr)

SPDFile
(from Doma nManagemeni)

Figure 10-24: Class Diagram of SPD XML Business Objects

Node Booter

The Node Booter is an executable component implementing the Core Framework interfaces for a Device
Manager servant object. The class diagrams for the Device Manager can be seen in Figure 10-25.

116

Parsel-til
(from Parming&UtilCla-s)

CF HandlerBase"

(from DomainManagement)
/N <<inherits>> /

<<uses>> <<inherits>>

[Par ser De)AeeManager /<<nhrs>>\ .

(fhom Parsing&U•llaes) fmm POACF) Properties Components ErrorNumberUtil

«<inherits»> (from Paring&UftiIaa-s) (from Parsing&UftiIaas) (from Parsing& UI as-)

""i<<inherits>>e\\r«strit /<ue> /<ue>/<ihrt>
TAO Ref~ountServant Base Z \ < s s> < s s ><<i h rt >

(fm(m TAO)

<<inherits>> •. ,/

«ta.g<<Interface>>
De'ceManager • <ntnit>

(from CF) /•.
<<Interface>> -• LogPort

FileSystem
4

registerDe'4ce0 (from LogPort)
Fileysem C) unregisterDetce0
(from CF) 0shutdownO

4
registerSerxce0 «<<uses>>

*unregisterSerxce0
t

getComponent Implementationld0

<<launch>> launch>>

GPP DeVce AudioDete
(from GPPDevice) (from AudioDevice)

Figure 10-25: Device Manager Class Diagram

The Node Booter component also has internal and external dependencies to ACE, TAO, Naming Service,
Event Service, SCA Interface, File Service, Log Port, Audio Device and GPP Device.

HW Interface
The HW Interface is a shared library component providing the client stubs and server skeletons for the
interfaces (APIs) used for data communication with OrcaCF device components. These interfaces are
defined in IDL and contained in the SimpleWaveform.idl file. All of the C++ code contained within this
component has been auto-generated by running the IDL file through the TAO IDL compiler. These
interfaces can be seen in Figure 10-26.

117

<<CORBATypedef>>
OctetSequence

CORBA::char (from CF)

<<CORBATypedef>> <<CORBATypedef>>
ControlType PayloadType
(from IOPacket) (from IOPacket)

<< Interface>>
IOPacket

vminPayloadSize unsigned short
•maxPayloadSize unsigned short

#pushPacket (control in ControlType, payload: in PayloadType) void

Figure 10-26: HW Interface Class Diagram

The HW Interface component has been developed as a shared library so that it can be dynamically loaded
and shared between OrcaCF components. For example, the Sound Demo Waveform Application utilizes
this library to exchange PCM data with the Audio Device.
The HW Interface component also has external dependencies to ACE and TAO

Audio Device
The Audio Device is a shared library component implementing the Core Framework interfaces for a
Device servant object and an 1O Packet servant object. The class diagram for the Audio Device can be
seen in Figure 10-27.

118

ErrorN u mbe rUtil

PortTAOServnt~se Dvce(from Parsing&UtilClasses)

(from POACF) (from TAO) (from POACF)

"«in\ri<< inherits>> «<inherits>>
"• e .-<~~~~~inherits>>rt»>\\\\

AudioDeviceEventPort\\/
(from AudioDevice) AudioDevice

<<inherits>: (from AudioDevice)

«.<uses>>
"-. •AudiooeviceO)

-.. «<virtu al>> ~AudioDeviceO)
"'\ 4 <virtu al>> usageStateO

"" «<virtual>> adm inState()
•<<virtu al>> adm inState()
•<<virtu al>> operatio nalStateO
•<<virtu al>> softwareProfileO)

<<uses>> <<virtu al>> label()
Audio~utUsesPort • «<virtu al>> corn pos iteoevice0)

(from AudioDevice) -- «<virtual >allocateCapacitYO

•<<virtu al>> deallocateCapacity0)
•<<virtu al>> identifier()

S•<virtu al>> start()
<<uses»> •<<virtu al>> stop()

•<<virtu al>> initialize()
-• •<<virtu al>> releaseabjectO

/• •<<«virtu al>> ru nTestO
S•<<«virtu al>> configu re()

Sim pleWaveform_lOPacket_i •<<virtu al>> get~rt0
(from POASim pleWaveform ::10 Packet) gt~ot(

Figure 10-27: Class Diagram for Audio Device

The Audio Device has been implemented as a shared library for efficiency reasons. CORBA
calls between objects running in the same process are much more efficient than CORBA calls
between processes. Since the Audio Device is instantiated within the same process as the Device
Manager and GPP Device, calls between these objects are more efficient than if they were
developed as executables.
The Audio Device has been built around the Open Sound System (OSS). OSS is an open system audio
architecture that supports off-the-shelf audio hardware. The operating system and sound device must
support OSS in order for the Audio Device to function properly.
The Audio Device component also has internal and external dependencies to ACE, TAO, Naming
Service, SCA Interface and HW Interface.

GPP Device
The GPP Device is a shared library component implementing the Core Framework interfaces for an
Executable Device servant object. The class diagram for the GPP Device can be seen in Figure 10-28.

119

ExecutableDevice ErrorNumberUtil TAO_ServantBase
(from POA CF) (from Parsing&UtilClasses) (from TAO)

Port
/ / /(from POA OF)

<<inherits>> <<inherits>>
<<inherits>> »

(

<<inherits>>

GPPDevice
(from GPPDevice) GPP DevceEventPort

(from GPPDevice)
4 GP P Deice()

«<<virtual>> -GPPDeice()
*<<«vrtual>> terminate() <<uses>>
#<<virtual>> execute()
#<<virtual>> loadO()
#<<virtual>> unload()
*#<<vrtual>> usageStateo
*#<<vrtual>> adminStateo
*#<<vrtual>> adminStateo
#<<virtual>> operationalState0 <<uses>> Interface»
«<<virtual>> softwareProfileO FileSysterm
«<<virtual>> label() (from CF)
«<<virtual>> corn positeDeviceo
«<<virtual>> allocateCapacityO
«<<virtual>> deallocateCapacityO

*<<virtual>> identifiero(
«<<virtual>> start() <<uses>>

«<<virtual>> stopo
«<<virtual>> initializeO
«<<virtual>> releaseObjecto4 <<virtual>> runTest0)

*<<virtual>> configureo <<Interface>>
*«Artual> q gurero DeviceManager

«<<virtual>> query()
(from CF)*#<<virtual>> getPort0

4 argvBuilder0
4*validOptions()

Figure 10-28 GPP Device Class Diagram

The GPP Device has been implemented as a shared library for efficiency reasons. CORBA calls
between objects running in the same process are much more efficient than CORBA calls between
processes. Since the GPP Device is instantiated within the same process as the Device Manager
and Audio Device, calls between these objects are more efficient than if they were developed as
executables.
The GPP Device component also has internal and external dependencies to ACE, TAO and SCA
Interface.

Sound Demo Waveform Application
In order to test and demonstrate the OrcaCF, a sample waveform application has been developed. The
waveform application developed for this purpose was the Sound Demo Waveform Application.

120

The Sound Demo Waveform Application consists of two packages that represent its components. These
packages are the Sound Demo Assembly Controller and the Sound Demo Resource.

Sound Demo Assembly Controller Package
The Sound Demo Assembly Controller is an executable component implementing the Core Framework
interfaces for a Resource servant object. The class diagram for the Sound Demo Assembly Controller can
be seen in Figure 10-29. The Application Factory loads and launches the Sound Demo Assembly
Controller on the GPP Device. The Application Factory also configures and makes connections to the
Sound Demo Assembly Controller based on the Sound Demo SAD.

121

Port
(from POA CF)

<<inherits>>» «inherits>>

AudioControlPort Test ResourceControlPort Resource
(from SoundDemoAssemblyController) (from SoundDemoAssemblyController) (from POA CF)

A

<« / <<inherits>>"<<s<uses>« <uses>>»

TestAssem blyController
(from SoundDemoAssemblyController)

*TestAssem bly Controller0
#<<virtual>> -TestAssem blyController0
#<<virtual>> identifiero
#<<virtual>> starto
#<<virtual>> stop(
*<<virtual>> initializeO
#<<virtual>> releaseObject0
#<<virtual>> runTesto
#<<virtual>> configure()
#<<virtual>> query(
#<<virtual>> getPort0

<<launch>>

TestAssemblyControllerLauncher
(from SoundDemoAssemblyController)

Figure 10-29 Sound Demo Assembly Controller Class Diagram

The Sound Demo Assembly Controller manages the Sound Demo application by controlling the
Sound Demo Resource and Audio Device that it is connected to as defined in the Sound Demo
SAD. The Sound Demo Assembly Controller is also the assembly controller for the Sound
Demo as defined in the SAD.
The Sound Demo Assembly Controller has internal and external dependencies to ACE, TAO, Naming
Service and SCA Interface.

122

Sound Demo Resource Package
The Sound Demo Resource is an executable component implementing the Core Framework interfaces for
a Resource servant object. The class diagram for the Sound Demo Resource can be seen in Figure 10-30.
The Application Factory loads and launches the Sound Demo Assembly Controller on the GPP Device.
The Application Factory also configures and makes connections to the Sound Demo Resource based on
the Sound Demo profile.

SimpleWaveformlOPacket i
(from POA-SimpleWaveform::IOPacket)

Port
(from POA OF)

<<inherits>

<<inherits>> <<inherits>>

DatalnPort 7 7\
(from SoundDemoResource)

FilelOPort DataOutPort

(from SoundDemoResource) (from SoundDemoResource)
«euses»-

«<uses»> 7 >

Z <<uses>>

TestResource
(from SoundDemofResource)

*Test Resource0
*<<virtual>> -TestResource0
4

<<virtual>> identifier() E m
«<<virtual>> start() <<inherits>> ErrorNuberUtil

«<<virtual>> stop((from Parsing&UtilClasses)
4

<<virtual>> initialize()
«<<virtual>> releaseObject0
«<<virtual>> runTest0
«<<virtual>> configure()
«<<virtual>> query()
«<<virtual>> getPort)

<<launch>> »
n e t>

"' Resource

TestResourceLauncher
(from SoundDemoResource)

Figure 10-30 Sound Demo Resource Class Diagram

The Sound Demo Resource is connected to the Audio Device, File Service and Sound Demo Assembly
Controller. The Sound Demo Assembly Controller controls the Sound Demo Resource by utilizing the
starto, stop() and configure() interface functions. In record mode, the Sound Demo Resource receives
PCM data from the Audio Device on its DataInPort and writes the data out to a file using the File Service
through its FileJOPort. In play mode, the Sound Demo Resource reads data from a file using the File
Service through its FileJOPort and sends it to the Audio Device through its DataOutPort for playback.

123

The Sound Demo Resource has internal and external dependencies to ACE, TAO, Naming Service and
SCA Interface.

Application HMI
The Application HMI is an executable component used to launch and control waveform
applications on the OrcaCF. The Application HMI obtains a reference to the Domain Manager
through the Naming Service. It then obtains a list of installed applications from the Domain
Manager utilizing the applicationFactories0 attribute of the Domain Manager. The list of
installed applications is presented to the user for selection. Upon the user selecting an
application to create the Application HMI calls createo on the appropriate Application Factory,
which returns a reference to the Application interface of the create application. The Application
HMI then controls the waveform application by calling the starto, stopo, configureo and
releaseObjecto functions on the Application interface.
The Application HMI has internal and external dependencies to ACE, TAO, Naming Service and SCA
Interface.

Event Viewer
The Event Viewer is an executable component used to view events generated on the ODM Event Channel
and IDM Event Channel. The Event Viewer obtains a reference to the Domain Manager through the
Naming Service. It then connects to the event channels using the registerWithEventChannel() function of
the Domain Manager. As events are broadcast on the ODM or IDM Event Channels, the Event Viewer
displays the messages to the screen. The class diagram of the Event Viewer can be seen in Figure 10-31.

PushConsumer
(from POACosEventComm)

<<inherits>>

EventViewer i
(from EventViewer)

<<uses>>

<<Interface>>
DomainManager

(from CF)

Figure 10-31 EventViewer Class Diagram

The Event Viewer has dependencies on ACE, TAO, Naming Service, Event Service and SCA Interface.

Log Service
The Log Service is an executable component implementing the Core Framework interfaces for a Log
servant object. The class diagram for the Log Service can be seen in Figure 10-32. The Log Service is

124

executed on the GPP Device by the Device Manager as defined in the Node Booter's DCD. Connections
to the Log Service are defined in the OrcaCF profile in the DCD, DMD and SAD. Connections to the
Log Service are made via the Log Port component.

Log
(from POA LogService)

<<inherits>>

LogService_i LogPort
(from LogService) (from LogPort)

<<connect>>

<<uses>>

LogProducer
(from LogProducer)

Figure 10-32 LogService Class Diagram

The Log Service has internal and external dependencies to ACE, TAO and SCA Interface.

Log Viewer
The Event Viewer is an executable component used to view events generated on the ODM Event Channel
and IDM Event Channel. The Event Viewer obtains a reference to the Domain Manager through the
Naming Service. It then connects to the event channels using the registerWithEventChannel() function of
the Domain Manager. As events are broadcast of the ODM or IDM Event Channels, the Event Viewer
displays the messages to the screen. The class diagram of the Event Viewer can be seen in Figure 10-31.
The Log Viewer is an executable component used to view log records within the OrcaCF Log Service.
The Log Viewer obtains a reference to Log Service through the Device Manager's registeredServiceso
attribute. The Log Viewer obtains a reference to the Device Manager through the Domain Manager's
deviceManagerso attribute, and obtains a reference to the Domain Manager through the Naming Service.
The Log Viewer has internal and external dependencies to ACE, TAO, Naming Service and SCA
Interface.

125

Appendix E. Errata

126

Scope

This section addresses implementation decisions on pending SCA change proposals. The SCA v2.2
specification has some discrepancies among the text of the main document, the IDL in SCA Appendix C,
and the XML in SCA Appendix D. These discrepancies are addressed in various change proposals. In
order to implement a Core Framework (CF) consistent with SCA v2.2, developers must choose a design
approach to resolve the discrepancies in the SCA specification. These design decisions are referred to as
"Errata" because they are associated with errata changes that must be made to the SCA v2.2 specification.
This section also includes limitations of this version of the Core Framework (OrcaCF vl.1.0) that are
important for developers planning to work with this software.

Errata

IDL
There are several discrepancies between the SCA version 2.2 and the IDL provided in SCA Appendix C.
These differences are noted below along with the implementation used for the development of the
OrcaCF. OrcaCF was implemented using the IDL as presented in SCA Appendix C as precedence over
the text of the SCA specification.

1. The LogService: :LogLevelType enumeration as defined in section 3.1.2.3.2.1.1 of the SCA lists
SECURITY ALARM as the first element and FAILURE ALARM as the second element of the
enumeration. The IDL provided for the LogService does not list SECURITYALARM in the
LogLevelType and FAILUREALARM is listed as the first element of the enumeration. For this
discrepancy the OrcaCF used the LogService IDL, and therefore the log service does not allow
for the setting of a SECURITYALARM level type, and the entire enumeration is off by a count
of one from the SCA specification.

2. The SCA section 3.1.3.2.6.3.6 has defined the sequence of LogLevelType as LogLevelSequence,
but the LogService IDL has defined the sequence of LogLevelType as LogLevelSequenceType.
The OrcaCF has implemented the LogService using the LogService: :LogLevelSequenceType as
defined in the LogService IDL.

3. The CF::DeviceManager::unregisterService operation as defined in section 3.1.3.2.3.6.8.2 of
the SCA has a parameter named unregisteringService, while in the IDL it is defined as
unregisteredService. The OrcaCF has implemented the unregisterService operation using the
unregisteredService parameter.

4. The CF::DeviceManager::unregisterService operation as defined in section 3.1.3.2.3.6.8.2 of
the SCA has the exception UnregisterError, the IDL does not have this exception. The OrcaCF
has implemented the unregisterService operation without the UnregisterError exception.

5. The SCA section 3.1.3.2.6.3.6 has defined the constant
CF::ExecutableDevice::STACKSIZEID. The IDL has defined this constant as
CF::ExecutableDevice::STACKSIZE. The OrcaCF has been implemented using the constant
CF: :ExecutableDevice: :STACKSIZE as defined in the IDL.

127

6. The CF::DomainManager::registerService operation as defined in section 3.1.3.2.3.6.7.2 of the
SCA does not include the exception CF::InvalidProfile, the IDL includes this exception with the
operation. The OrcaCF has been implemented using the operation
CF::DomainManager::registerService as it is defined in the IDL with the CF::InvalidProfile
exception included.

7. The OrcaCF could not be implemented with the CF: :ErrorNumberType as defined in section
3.1.3.5.13 of the SCA due to conflicts with the Linux OE POSIX error number type. The code
will not compile properly using the error number types as defined in the SCA. To avoid this
conflict, the OrcaCF has been implemented with the string "CF_" appended at the beginning of
each of the CF::ErrorNumberType definitions.

XML

There are several interpretation issues and validation issues concerning the XML as defined in SCA 2.2
Appendix D, and with the DTD files. This section provides an explanation regarding the changes made to
the XML in order to implement the OrcaCF. This section also points out important OrcaCF XML
limitations for developers planning to write their own XML and software, for use with the OrcaCF.

8. The Device Configuration Descriptor as defined in SCA 2.2 Appendix D Attachment 1 has
defined the element "componentinstantiationref" twice. The second definition has been removed
from the OrcaCF DTD.

9. The Device Package Descriptor as defined in SCA 2.2 Appendix D Attachment 1 has defined
the element "description" twice. The second definition has been removed from the OrcaCF DTD.

10. The Domain Manager Configuration Descriptor as defined in SCA 2.2 Appendix D
Attachment 1 has defined the element "devicemanagersoftpkg" instead of
"domainmanagersoftpkg." The element "devicemanagersoftpkg" has been replaced with
"domainmanagersoftpkg" in the OrcaCF DTD.

11. The Software Package Descriptor as defined in SCA 2.2 Appendix D Attachment 1 has defined
the element "propertyfile" twice. The second definition has been removed from the OrcaCF
DTD.

12. There are some interpretation differences between the OrcaCF and the JTAP tool (July 03
version) with regards to the XML as defined in the SCA. For additional information regarding
these issues refer to Appendix F of the OrcaCF Software Users Manual.

13. The SCA allows many variations and combinations with the XML files for the Domain Profile.
The OrcaCF does not support all possible variations of XML. It has only implemented the XML
parsing necessary to accommodate the SoundDemo waveform application and devices delivered
with the OrcaCF. However, this should be sufficient for most applications. For additional
information regarding the level of XML parsing within the OrcaCF, refer to Appendix F of the
OrcaCF Software Users Manual.

14. DCD XML file: <filesystemnames> - The DeviceManager does not currently handle
multiple FileSystems. We have a generic FileSystem that uses the environment variable

128

"ORCACF ROOT" as its filesystem name. The optional <filesystemnames> element should
not be in the DCD XML file.

15. DCD XML file: <componentinstantiation> - The DeviceManager does not currently
handle multiple component instantiations within a single <componentplacement> element.
Multiple instantiations can be accomplished by creating multiple <componentplacement>
elements with single <component instantiations> elements. Each instantiation must
have a unique UUID.

16. DCD XML file: <componentproperties> - The DeviceManager does not currently handle
the optional component properties listed under <componentinstantiation> elements. In
order to specify properties for a component, you must list a PRF XML file in the component's
SPD XML file.

17. PRF XML file(s): The DeviceManager currently only handles configure properties of type
<simple> and <simplesequence>. All data types for the <simple> element are handled,
but only ulong is handled for the <simplesequence> element.

18. SPD XML file(s): <dependency> - The DeviceManager currently does not handle the
dependency element.

19. SPD XML file(s): <runtime> - The DeviceManager currently does not handle the runtime
element.

20. SPD XML file(s): <code> - The DeviceManager currently loads and executes EXECUTABLES
only listed under the <code> element. It does not handle SHARED LIBRARIES with
entrypoints. A <localfile> and <entrypoint> are REQUIRED for any Device or Service
that is listed in the DCD under <componentplacement>.

21. SPD XML file(s): <stacksize><priority> - The DeviceManager does not currently
handle these two options. Both of these options are unstable and it is highly recommended they
NOT be used.

22. DCD XML file: Our GPPDevice MUST be listed in the DCD XML file, even if other developers
provide their own CF::ExecutableDevice. The GPPDevice is a CF::ExecutableDevice that is
used by our DeviceManager to launch/execute other Devices or Services listed in the DCD. If a
Device or Service listed in the DCD does not specify a <deployondevice> element, the
DeviceManager uses the GPPDevice as the default CF: :ExecutableDevice.

SOURCE
This section points out important limitations in the implementation of the OrcaCF vl.1.0. This
information is important for developers planning to write their own software, for use with the OrcaCF.

Do main Manager
The registerDeviceo function of the DomainManager currently does not parse a registering

device's XML to check for a valid profile.

129

The Domain Manager does not currently store connections listed within the DCD as pending
connections. The DomainManager assumes that when the DeviceManager has registered with the
DomainManager, that all of the DeviceManager's devices and services have already registered back with
it. If a third-party DeviceManager registers with the DomainManager prior to all device and service
registration, exceptions may be thrown. This problem effects the registerDeviceManagero,
registerDeviceo, and registerService(functions.

The DomainManager does not currently store connections listed within an SAD as pending
connections. The DomainManager and ApplicationFactory assume that all necessary devices and
services needed for an application are running and registered prior to creation of an application.

The DomainManager only parses the <simple> properties, and <simplesequence> properties of
type ulong. This effects the query() and configure() functions.

Application Factory
The ApplicationFactory assumes that all devices and services necessary for application creation

are already registered with the DomainManager. If the SAD lists a service that is not yet registered with
the DomainManager, the ApplicationFactory will throw an exception.

The ApplicationFactory only parses <simple> and <simplesequence> properties. All other
properties are ignored by the ApplicationFactory.

File Service
Due to the current configuration of the CORBA middleware, the OrcaCF is unable to throw

exceptions and provide return values at the same time. The OrcaCF assumes that if an exception is
caught the return value is invalid and should not be touched. This effects the open() and createO
functions within the FileManager and FileSystem. This problem also affects other SCA defined functions
where an exception and return value are both specified.

When copying a directory the OrcaCF File Service only copies the directory and not the contents
of the directory.

DeviceManager

* shutdown (: The DeviceManager's shutdownO operation is currently unstable. There are
ORB concurrency issues that have not been resolved at this time. It is highly recommended
that you do not invoke the shutdownO operation.

GPPDevice :

* releaseObj ect () The GPPDevice's releaseObject0 operation is currently unstable. It is
highly recommended that you do not invoke the releaseObject 0 operation at this time.

130

execute(): The GPPDevice only executes EXECUTABLE files. Passing in a function
name is not implemented. EXECUTABLES are launched as new "processes" as opposed to
"threads." The GPPDevice handles the STACK SIZE and PRIORITY being passed in as
options, but the PRIORITY will not actually be SET because it requires root privileges and is
unstable. The STACK SIZE option in functional, but it is also unstable and we recommend
not using it.

131

Appendix F. Release Notes

132

Scope

The OrcaCF vl. 1.0 is an initial release.

Overview

The OrcaCF implements the Joint Tactical Radio System (JTRS) Software Communications Architecture
(SCA) version 2.2 specification. It was developed in C++ and uses ACE/TAO for the CORBA
middleware, Xerces for the XML parser, and Linux for the Operating System.

The OrcaCF vi. 1.0 is ideal for rapid prototyping of waveforms built to SCA specifications since it is PC-
based, and uses Open Source software components. It has been built and tested on Red Hat 7.3 (gcc
2.9.x), RH 9.0 (gcc 3.2.x), and Fedora Core 1 (gcc 3.3.x).

The OrcaCF runs on a standard Linux PC and comes with a simple audio recorder Sound-Demo
"waveform" that is used to demonstrate the capabilities of the OrcaCF. The Sound-Demo application
consists of an Audio Device, Recorder Resource, Assembly Controller, and a simple Human Machine
Interface (HMI).

For more information, see www.OrcaCF.com.

Release Notes

Change Proposals:
This release includes change proposals (CPs) that have been incorporated into the lastest SCA Spec
v2.2.1. The implemented CPs are: 13, 15, 26, 44, 45, 70, 73, 74.

133

Appendix G. Code Style Guide

134

Scope

This document describes a C++ programming style guide to be used for the development of C++
Software applications for the Joint Tactical Radio System (JTRS) Software Communications Architecture
(SCA). For information on the JTRS SCA, refer to http://jtrs.army.mil.

Objectives

The objectives of this style guide are to:
* Standardize source code within the project;
* Provide source code readability between developers;
* Increase code understanding within the development team; and
* Provide a basis for formal inspection.

To produce robust software, formal inspection of developed source code is a necessity. Formal inspection
requires that several software engineers closely scrutinize a colleague's source code, report major and
minor defects, and agree as to whether or not the source code performs the required work. All Software
Communication Architecture (SCA) development done by L-3 Communications Government Services
Inc. (L3) and its subcontractors shall use this programming style guide to aid in this effort.

Due to the environment associated with SCA development, some of the following rules may differ
slightly from standard C++ styles. This is due to the introduction of Common Object Request Broker
Architecture (CORBA) into the development. Much of the code has been auto generated by the Object
Request Broker (ORB) compiler and the style has been defined to remain consistent with the auto
generation features of the Adaptive Communication Environment/The Ace ORB (ACE/TAO) ORB, the
ORB being used by L3 for SCA development. The L3 development team followed ACE/TAO and
CORBA styles for consistency.

Document Overview

This document provides general guidance as it relates to programming style. This document does not
cover design or technique, but instead provides a programming style to ensure consistent and readable
source code. This Style Guide is used by the L3 development team as a reference while programming
JTRS applications.

The remaining sections of this document are organized in the following manner:

Section 0 is a list of reference documents for this Style Guide.
Section 0 is a set of rules for documenting the source code.
Section 0 provides rules for applying white space to the source code.
Section 0 is a set of general naming conventions used on this project.
Section 0 provides guidelines on the declaration and initialization of variables.
Section 0 is a set of general rules regarding preprocessor directives.
Section 0 provides general formatting rules for writing statements.
Section 0 is a list of defect avoidance guidelines.
Section 0 is a code checklist which will be used in conjunction with sections 2.0 to 9.0 to review
code.

135

Relationship to Other Documents
This Style Guide provides a standard set of style for coding the OrcaCF. For additional guidelines and
lessons learned, please refer to SUM Appendix B - Developers Notes.

Referenced Documents
* JMCIS MARITIME COMMAND INFORMATION SYSTEM (JMCIS) Re-Engineering C++

Programming Style Guide, 16 December 1999

DOCUMENTATION
There are two major objectives behind the standardization of the documentation:

1. Readability that is standardized to the SCA
2. Provide for the generation of code count metrics.

In order to accommodate the recording of metrics during the development of the OrcaCF, it is important
to document all source code in a standard manner. These documentation standards are strictly followed to
ensure accuracy of the metrics, and to promote consistency in code development.

Standard Header

All source code files created by L3 use the following header. If required, the comment delineation may
be changed to accommodate the development environment. The header used for C++ development
appears below:

// <Software Metric Tag>

File: <File name>

Created: <Date>

Author: <Author>

* L-3 Communications GSI

* 1300-B Floyd Ave
* Rome, NY 13440
* (315) 339-6184

//<license>
//</license>
//<revision>
//</revision>
//<environment>
//</environment>

The markers "<>" identify the items in the header that are to be customized for each source code file. The
license, revision, and environment customization tags are used to automate the updating of that
information in mulitple files through a custom script we developed. This script will copy the desired
license, revision, or environment text from a given file, and insert the text between the appropriate start
and end markers in the header.

<SoftwareMetricTag> - see section 0 for more information.

136

<File name> - Shall be the name of the source or header file.

<Date> - Shall be of the format mm/dd/yyyy and will be the date that the file was created.

<Author> - Shall be the name of the primary person responsible for the creation of the file.

<license></license> - inserted between these tags shall be the latest version of the L-3
Communications Government Services Inc. Software License Agreement. See SUM Appendix A
for more details on the specific wording of the Software License.

<revision></revision> - inserted between these tags shall be the revision history of the file, which
shall be of the following format. The person in charge of configuration management for the
overall program shall determine this information.

Revision History:

Version Date Corments

<version> <date> <comments>

<version> - shall be of the format x.y.z, and shall reflect the version number of the build for the
overall program. Numbering shall begin with 1.0.0.

<date> - shall be of the format mm/dd/yyyy and will be the date of the version release for the
overall program.

<comments> - shall briefly describe the features/changes/fixes in the release.

<environment></environment> - inserted between these tags shall be the development
environment of the file, which shall be of the following format. The Development Environment is
the combination of hardware and software that is being used to develop the program.

Development Environment:

Hardware:

Processor: <processor type>

Memory: <memory amount>

Peripherals: <peripheral type>

Software:

OS: <operating system>

IDE: <development environment>

Compiler: <compiler type>

Utilities: <add-ons>

Requirements Met:

Source: <Source>

<processorjtype> is the type of processor that the source code is being programmed for.

<memory-amount> is the amount of memory in the development platform.

<peripheral_type> shall be a list of the platform peripherals and their configuration or settings.

<operating-system> is the OS and version of the development platform.

<development environment> is the Integrated Development Environment (IDE) being used to
develop the source code (e.g. KDevelop 2.1).

137

<compiler-type> is the type of compiler being used to develop the source code (e.g. gcc 2.96-
110)

<add-ons> are additional utilities to aid in the development of the source code.
These could be CORBA Services, XML parsers, Active-X components, etc. Only
the utilities utilized within the source code need to be listed.

Software Metric Tag
Each file, whether auto-generated, reused, or created by L3, shall have a comment on the first line of the
file that delineates the type of source code file. This delineator shall have the following structure.

// <Software Metric Tag>

The <Software Metric Tag> is used for the purpose of counting Source Lines of Code (SLOC).
Productivity is based on an accurate count of new and modified code. Therefore, the Software Metric
Tag will be used to separate reused and auto-generated code files from the new and modified source code
files. Valid delineators for the SoftwareMetricTag consist of the following:

"* new
"* reuse
"* mod
"* auto
"* internal

new

The 'new' delineator shall identify source code files that are new for the current version of the software
product. After the software product is base lined for final version release, the 'new' delineator shall be
changed to 'reuse' in order to designate the file as being created in a previous version of the software
product. Source code files in this category are counted for total SLOC and are used for productivity
calculations.

reuse
The 'reuse' delineator shall identify source code files used "as is" that were not developed for the current
version of the software product, but are being delivered with the software product. Reuse code comes
from two sources: the first is source code developed for a previous version of the software product. The
second source of reuse code comes from third-party development. Source code files in this category are
counted for total SLOC, but are not used for productivity calculations.

mod
The 'mod' delineator shall identify source code that was previously tagged as 'reuse' but has been
modified for use within the current version of the software product. The 'reuse' tag should only be
changed to 'mod' if a programmatic change has been made to the source code file. The changing of
comments or variable names within the 'reuse' file does not warrant a change to 'mod'. Source code files
in this category are counted for total SLOC and are used for productivity calculations.

auto
The 'auto' delineator shall identify source code files that were auto-generated by a tool that generates
source code. An example of this is an IDL compiler that generates client and servant source code.

138

Source code files in this category are counted for total SLOC, but are not used for productivity
calculations.

internal
The 'internal' delineator shall identify source code files that were developed during the current version of
the software product, but are not delivered as part of the software product distribution. An example of a
source code file that falls into this category is one that contains only unit testing code. Source code files in
this category are counted for total SLOC and are used for productivity calculations.

*.h Files
The C++ header files shall be documented in such a way as to describe the performance of the class and
functions. The intent of the documentation in the *.h file is to provide enough information in order that
the class can be reused in another program based on the *.h file and excluding the *.cpp file.

Functions
All function headings will be documented for readability, starting and ending with a 78 character line of
asterisks ' * '

Example:

" Function: Destructor ()
" Description: Destroys the CF FileSystemlI object

Arguments: None
Return: None
Exception: None
Notes: None

SCA classes and functions
For classes and functions that have been defined in the SCA, the appropriate sections, along with
paragraph numbers, shall be cut and pasted into the file just in front of the class or function that it pertains
to.

Example: taken from the create () function in the File System implementation file.

" SCA v.2.2
" 3.1.3.3.2.5.5 create.
" 3.1.3.3.2.5.5.1 Brief Rationale.
" The create operation provides the ability to create a new file on the
" FileSystem.
" 3.1.3.3.2.5.5.2 Synopsis.
" File create(in string fileName) raises(InvalidFileName, FileException
" 3.1.3.3.2.5.5.3 Behavior.
" The create operation shall create a new File based upon the provided
" fileName attribute.
" 3.1.3.3.2.5.5.4 Returns.
" The create operation shall return a File component reference to the
" opened file. The create operation shall return a null file component
" reference if an error occurs.
" 3.1.3.3.2.5.5.5 Exceptions/Errors.
" The create operation shall raise the CF FileException if the file
" already exists or another file error occurred.
" The create operation shall raise the InvalidFileName exception when a
" fileName is not a valid file name or not an absolute pathname.

virtual : :CF: :File ptr create
const char * fileName,
CORBA: :Environment &ACE TRY ENV

139

ACE THROW SPEC (
CORBA: :SystemException,
CF :: InvalidFileName,
CF ::FileException

Non-SCA Functions
Functions that have not been defined in the SCA that are part of the SCA development shall be
documented in a similar manner as the SCA defined functions.

Example:

" Function: The function name.
" Description: A description of what the function does.
" Arguments: A list of the arguments for the function and their purpose.
" Return: The return values for the function.
" Exceptions: A list of exceptions that can be thrown by the function.
" Notes: Any general coamments that the programmser feels are necessary.

*.cpp Files

The *.cpp files shall be documented in order to easily understand the flow of logic used to implement the
functions for the class it is associated with. For a description of how the function works and information
on using the function, the *.h file will be referred to.

Function Delineators
To allow for the easy location of functions within the *.cpp file, the following example shows the
delineation that will be used for each function. The end of the function will also be delineated. After the
closing "I" for the function, a comment will be entered as follows: "I // end <functionName> ()"

The example is taken from the create () function in the Files y stem implementation file.

Example:

create()

::CF: :File ptr CF FileSystem i::create
const char * fileName,
CORBA: :Environment &ACE TRY ENV

ACE THROW SPEC (
CORBA: :SystemException,
CF :: InvalidFileName,
CF :: FileException

/7 implementation source code goes here
I // end create()

Branching Statement and Loop Delineators
For readability of code, the end of blocks of code will be delineated clearly for nested blocks and blocks
exceeding 10 lines of code. After the closing "}" for the code block, a comment will be entered as
follows: "I //end <Block>". Where Block indicates one of the following: while, if, if/else, switch.
Refer to the example in section 0.

140

WHITE SPACE

White space is included within the source code to enhance the readability of the files. Following are
some guidelines regarding the use of white space. All of the subsections refer to the following as an
example.

Example:
int object: :function(

int argl,
float arg2)

if (expression)

else

switch (c)

case 1k:
break;

case 2:
break;

default:
break;

// end switch (c)
// end if/else

I //end function()

Line Length
Maintain a maximum line length of 78 characters for all comment and source lines.

Tabs
Tab characters shall not appear in the source code files. Spaces shall always be used for indentation of
lines. For convenience, most editors allow for the conversion of the tabs to spaces.

Indentation Length
The indentation length shall be 3 characters.

Indent Style
Indent bracket and line-up code with bracket.

Statements/Line
There shall only be one statement per line.

Example:
int varl = 0; //Good Practice
float var2 = 0.0;

int varl = 0; float var2 = 0.0; //Poor Practice

Operato rs
There shall be at least one space before and after each operator, including the assignment operator.

141

Example:
var = 1 + 5; //Good Practice

var=1+5; //Poor Practice

Variables

Each variable shall be listed on a separate line.

Example:
int varl; / 7/Good Practice
int var2; I
int varl,var2; //Poor Practice

Long Statements

In a statement that consists of two or more lines, every line except the first must be indented one
additional tab-stop. This is to show that it is a continuation of the first line.

Example:
if ((argumentl) &&

(argument2) &&
(argument3))

} // end if

Declare Parameter list
List parameters below function.

Example:
::CF: :File ptr CF FileSystem i: :create

const char * fileName,

CORBA: :Environment &ACE TRY ENV

Naming Conventions

Names

Choose variable names that suggest the usage.

Class Names
Class names are broken down into three components for the OrcaCF, the prefix, the suffix and the
component name. Use upper case letters as word separators in the component name, lower case for the
remainder of a word. First character in the component name is upper case.

Example:
CF DomainManager i. cpp

ofix

'CF_' is a prefix that signifies a standard Core Framework class.

142

'_i' is suffix that signifies an implementation class.
Class names without a prefix or suffix signify a helper class.

Variables
Variables shall begin with a lowercase letter.

Example:
string name;

Multiple Word Names
Where names consist of more than one word, the words are written together and each word that follows
the first shall begin with an uppercase letter, with the exception of CORBA suffixes as shown section 0.

Examples:
mFileName, mFileName var

Underscores
Underscores may be used within variable names, between suffix and name, or between prefix and name.
Variables will not begin with underscore characters.

Prefix Notation
The identifier for each variable are indicated by the following prefix designations:

"* 'g' - global variable: a global variables should be used only when absolutely necessary, such as
with thread code.

"* 'm' - member variable: A member variable is a private member variable to a class. These
private member variables can be used directly by class member functions, but can only be
accessed by non-class member functions through public functions.

"* 'p' - pointer variable
"* 'o' - object variable

Pointers shall be prefixed by a 'p' with names following starting with uppercase.

Example: String* pName;

Globals will be prefixed by a 'g' with names following starting with uppercase.

Example: String gName;

Combinations of prefixes may be used as necessary.

Example: String* gpName;

Functions
The name of a function shall clearly define the action of the function.

Example: checkForErrors (), instead of check ().

Polymorphic Declarations are permitted

143

Example: void RetryValue (int setValue) - set a value

Enum Names
Enumerations shall be all uppercase with'_' word separators. Enumeration limits should be declared.

Example:
enum Msg T

MSG-MIN,

MSG OVERRUN = MSG MIN, //Minimum of range

MSGUNDERRUN,

MSG-ANOTHER,

MSG MAX //Maximum (last + 1)
};

Abstract Data Types, Structures, Typedefs & Enums Names
The names of abstract data types, structures, typedefs, and enumerated types shall begin with an
uppercase letter.

General Naming Conventions

Suffix
A name shall be separated from its suffix using an underscore ('_').

TypeNames
TypeNames that differ only by the use of uppercase and lowercase letters shall be avoided.

Abbreviations
Names shall be easily interpreted and understood.

CORBA Suffixes
With the intention of differentiating CORBA objects from C++ objects, the following naming
conventions shall be used for all variables declared as CORBA objects.

Example:
CF: :File * file ptr //CORBA Object Pointer type

CF: :File var file var //CORBA Object var type

CF: :File file obj //CORBA Object base type

CF: :File in file in //CORBA Object in type

CF: :File out file out //CORBA Object out type

CF: :File inout file inout //CORBA Object inout type

Xerces Parser Naming Conventions
In order to differentiate Xerces Parser objects from C++ objects, the following naming conventions
shall be used for all variables declared for XML parser classes:

Example:
DOMElement* localfileElement // DOM Element Object Pointer type

DOMNode* localfileNode // DOM Node Object Pointer type

DOMNodeList* localfileNodeList // DOM Node List Object Pointer type

const XMLCh* localfile-xmlch // XMLString Object Pointer type

The first part of the declared variable above is the tag name and the second part is the object pointer type
for that particular tag.

144

Example:
Tag: <value> 3 </value>

DOM Element Object Pointer type: DOMElement* valueElement

DOM Node Object Pointer type: DOMNode* valueNode

Tag: <componentfile>

XMLString Object Pointer type: const XMLCh* componentfile xmlch

DOM Node List Object Pointer type: DOMNodeList* componentfileNodeList

Variable Usage

Constants

Use of Constants
Avoid the use of numeric values in code. Use symbolic values instead.

Examples:
const MAX VALUE = 5;

for(int i = 0; i < MAX VALUE; ++i) // Good Practice

for(int i = 0; i < 5; ++i) // Poor Practice

Constant definitions
Constants shall not be defined in the preprocessor with the #define. Constants will be defined using the
const or enum programming definitions.

Examples:

const static unsigned int MAXFILES = 20; // Good Practice

#define MAXFILES 20; // Poor Practice

Variables

Variable Initialization
Every numeric variable that is declared shall be initialized with a value before it is used.

Variable Declaration
Variables shall be declared at the beginning of the functions or classes.

Re-declaration of Variables
A local variable shall not be re-declared within a function.

Array Constants
An Array shall not be dimensioned to a hard-coded constant.

Example:
int intArray[totalMonths const]; // Good Practice

int intArray[13] ; // Poor Practice

Preprocessor Directives

145

Multiple Instances of Include Files
Header files shall include code to prevent multiple instances of include files. For example, all data in a
header file may be wrapped with the following preprocessor statements:

Example:
#ifndef MYINCLUDEH
#define MYINCLUDEH

#endif

Location of Include Files
Only those #include files necessary for the compilation of a header file shall be included in the header
(*.h) files. Include files shall be placed in the *.cpp files whenever possible.

#include comments
A short comment shall be placed with the include file stating the reason the file is being included.

#include directives
#include directives <> shall be used for files containing standard system header information. Double
quotes, ""., shall be used for include files written by the developer or non-standard system header
information.

General Formatting

Arithmetic Parenthesis
Use parenthesis to clarify the order of evaluation for operators in arithmetic expressions.

Examples:
i ((a * b)+ 5) //Good Practice
j (- a + b) 10) / 2); //Good Practice

x - a + b *1 / 2; //Poor Practice

Floating Point Declarations
When specifying a constant floating point number, place a number on either side of the decimal point.

Examples:
float a - 0.3; // Good Practice

float a - .3; // Poor Practice

Statem ents
All condition blocks shall be bracketed regardless of the number of body statements. Comment all null
statements.

Example:
if (condition)

A single statement;

while (Workingcondition)

146

//null

Switch Statements

Default Branch
A switch statement shall always contain a default branch.

Fall Through
A case statement that falls through to the next case statement shall have a comment stating so.

Example:
switch (c)

case 1:

/7 fall through

case 2:

break;

default:

break;

} /7 end switch

Defect Avoidance

Required Methods for a Class
Classes should implement the following methods. If you don't have to define and implement any of the
"required" methods, they should still be represented in your class definition as comments. Standardized
'editor' templates for class declaration & definition shall be defined for each project.

"* Default Constructor - If your class needs a constructor, make sure to provide one. You need one if
during the operation of the class it creates something or does something that needs to be undone
when the object dies. This includes creating memory, opening file descriptors, opening
transactions etc. If the default constructor is sufficient, add a comment indicating that the
compiler-generated version will be used.

"* Virtual Destructor - If your class is to be derived from other classes, then make the destructor
virtual.

Direct Access to Data Members
Direct access to an object's data members shall be avoided. Data members shall not be declared as
public. Public accessor methods shall be provided.

Return Values
Public functions shall never return a pointer or references to a local variable. This violates the concept of
data encapsulation. Always check the return value of functions that return a pointer.

Function Prototypes
A function prototype and the function definition shall use the same names for their formal arguments.

147

Example:
char * profile (CORBA::Environment &ACE TRY ENV); /7 prototype
char * Application: :profile (CORBA: :Environment &ACE TRY ENV) // definition

Specification of Return Type
Always specify the return type of a function or member function (exceptions to this rule are the
constructors and destructors of a class).

Example:
void functionl (int i)/ Good Practice

functionl (int i); Poor Practice

Globals
Global data shall be avoided whenever possible.

Macros
Avoid using macros when the same functionality can be implemented using a function. Macros may have
unwanted side effects.

Parameter Checking
Each function that is passed arguments shall check the integrity of the arguments before using them.

148

Code Review Checklist
The following contains a checklist used for code inspections on the OrcaCF. When performing code
review this section is printed and used to review each source code file.

General Information and Requirements

Date:

Reviewer(s):

Developer(s):

File Name(s):

Test File Name(s): To check Requirements Only:

File Type: {circle 1 or more } Auto / Auto mod / Reuse mod / New / Header / Test

Have the requirements been met for the current file under review? D-yes Duno D]n/a -]c (corrected)
If not give a brief explanation as to why?

SCA Requirements Documented in Header File:

SCA Requirements tested:

SCA Requirements NOT Documented in Header File:

SCA Requirements NOT tested:

Questions for the developers?

149

Documentation

3.1 Standard Header Does the standard header meet the style D-yes Duno D-n/a D-c
guide?

3.2 Requirements Are the requirements delineated with D-yes Duno D-n/a [-c
correct comments?

3.3 Standard File Do all files have a comment on the first D-yes Duno D-n/a D-c
Delineator line indicating type of source code file?

3.4 Modifications Are modifications delineated per the style D-yes Duno Dun/a [-c
Delineator guide?

3.5 *.h Files Does the documentation of the header files D-yes Duno Dun/a D-c
describe the functioning of the class and
functions?

3.5.1 Functions Are all functions wrapped with asterisks '*' D-yes Duno Dun/a D-c
that are 78 characters long

3.5.1.1 SCA classes and Do the classes and functions taken from D-yes Duno Dun/a D-c
Functions the SCA appear in front of the section they

pertain to (including sect. and par. #'s)
3.5.1.2 Non-SCA Functions Are the functions not defined in the SCA D-yes Duno Dun/a D-c

documented like those taken from the
SCA?

3.6 *.cpp Files Does the documentation for the *.cpp file D-yes Duno Dun/a D-c
describe how the function works?

3.6.1 Function Delineators Are the start and ending of functions D-yes Duno Dun/a D-c
clearly documented per the style guide?

3.7 Branching statements Are the nested blocks of code and blocks D-yes Duno Dun/a D-c
exceeding 10 lines clearly defined? (I/
end if, // end else, // end do)

Overall Documentation Does the overall comments accurately D-yes Duno Dun/a D-c
describe what the program should or
should not do?

Notes:

White Space

4.1 Line Length Are the line lengths within the 78 D-yes Duno Dun/a D-c
character limit?

4.2 Tabs Are spaces used in place of tab D-yes Duno Dun/a D-c
characters?

4.3 Indentation Length Are the indentation lengths 3 characters? D-yes Duno Dun/a D-c
(textpad paragraph markers)

4.4 Indent Style Is the code indented and lined up with the D-yes Duno Dun/a D-c
bracket?

150

4.5 Statements Is there only 1 statement per line? D-yes Duno D-n/a D-c

4.6 Operators Is there at least 1 space before and after D-yes Duno D-n/a D-c
each operator?

4.7 Variables "Are variables separated by a', '. (comma D-yes Duno D-n/a [-c
space)?"

4.8 Argument List Are function call parameter lists D-yes Duno Dun/a D-c
separated by a', ' (comma space)?

4.9 Long Statements In statements where there are 2 or more D-yes Duno Dun/a D-c
lines, are 3 space indentations used to
show a continuation of the previous line?

4.10 Declare Parameter List Are parameters listed below function? D-yes Duno Dun/a D-c

Overall White Space "Overall, is there sufficient white space D-yes Duno Dun/a D-c
for readability?"

Notes:

Naming Conventions

5.1 Names Do the variable names suggest usage or D-yes Duno Dun/a D-c
are they commented correctly?

5.1.1 Class Names Does the class name describe what it is? D-yes Duno Dun/a D-c

5.1.2 Variables Do all the variables begin with lowercase D-yes Duno Dun/a D-c
letters?

5.1.2.1 Multiple Word Names Are multi-word names indicated with D-yes Duno Dun/a D-c
uppercase letters?

5.1.2.2 Underscores Do all variables start with a letter? As D-yes Duno u]n/a D]c
opposed to a '_'.

5.1.2.3 Prefix Notation Are all variables pre-fixed with the proper D-yes Duno Dun/a D-c
identifiers?

5.1.3 Methods/Functions Do the names of the methods/functions D-yes Duno u]n/a D]c
describe the action clearly?

5.1.4 Enum names Are enumerations uppercase with '-' [D]yes [D]no [D]n/a [D]c
separators?

5.2.5 CORBA Suffixes Are the CORBA suffixes indicated? D-yes Dno Dun/a D]c

Notes:

151

Variable Usage

6.1.1 Use of Constants "Are numbers avoided in looping D-yes u]no D]n/a D-c
structures?(ie.. .For, Do, While)"

6.1.2 Constant definitions Are #define constants avoided? D-yes Duno D-n/a [-c

6.2.1 Variable Initialization Are all numeric variables initialized? D-yes Duno D-n/a [-c

6.2.2 Variable Declaration Are all variables declared at the D-yes Duno Dun/a [-c
beginning of functions or classes?

6.2.3 Re-declaration of Are variables unique and only declared D-yes Duno Dun/a D-c
Variables once?

6.3 Array Constants Are arrays dimensioned to a variable? D-yes Duno D-n/a D-c

Notes:

Preprocessor Directives
7.1 Multiple Instances of Is the header file wrapped with pre- D-yes Duno D-n/a D-c

include files processor statements to prevent multiple
instances of include files?

7.2 Location Are the include files located in the *.cpp D-yes Dno D-n/a D-c
file as specified by the style guide?

7.3 # include Comments Is the include file commented properly? D-yes Duno D-n/a D-c

7.4 #include Directives Are the proper directives indicated? D-yes Duno D-n/a D-c

Notes:

General Formatting

8.1 Arithmetic Parenthesis Are parenthesis used to clarify order of D-yes Duno Dun/a D-c
evaluation?

8.2 Floating Point Are numbers placed on either side of D-yes Duno D-n/a D-c
Declarations decimal point?

8.3 Statement Are all the condition blocks bracketed? D-yes Dno D-n/a D-c

8.4.1 Default Branch Do all switch statements contain default D-yes Dno D-n/a D-c
branches?

8.4.2 Fall Through Are all fall throughs commented? D-yes Dno D-n/a D-c

Notes:

152

Defect Avoidance

9.1 Required Methods Are the required constructors and D-yes Dno D-n/a D-c
destructors included?

9.2 Data members "Is access to public, virtual or protected D-yes Duno D-n/a [-c
data members avoided? (are access
functions created and/or private sections
included?)"

9.4 Function Prototypes Are the same names used for function D-yes Duno D-n/a [-c
prototype and definition?

Notes:

153

